
CX-Supervisor
Software

Cat No. W09E-EN-04

Script Language

Software Release 3.4

Reference

Trademarks and copyrights Notice

1

Notice
OMRON products are manufactured for use by a trained operator and only for
the purposes described in this manual.
The following conventions are used to classify and explain the precautions in
this manual. Always heed the information provided with them.

Trademarks and copyrights
MECHATROLINK is a registered trademark of Yaskawa Corporation.
Trajexia is a registered trademark of OMRON.
EtherCAT is a registered trademark of the EtherCAT Technology Group.
All other product names, company names, logos or other designations
mentioned herein are trademarks of their respective owners.

Copyright
Copyright © 2017 OMRON
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, mechanical,
electronic, photocopying, recording, or otherwise, without the prior written
permission of OMRON.
No patent liability is assumed with respect to the use of the information
contained herein. Moreover, because OMRON is constantly striving to improve
its high-quality products, the information contained in this manual is subject to
change without notice. Every precaution has been taken in the preparation of
this manual. Nevertheless, OMRON assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained in this publication.

Note: Indicates information of particular interest for efficient and convenient
operation of the product.
Caution:
Indicates information that, if not heeded, could possibly result in minor or
relatively serious injury, damage to the product, or faulty operation.
Warning:
Indicates information that, if not heeded, could possibly result in serious injury
or loss of life.

Copyright Notice

2

Table of Contents

3

Notice ..1

Trademarks and copyrights..1
Copyright..1

SECTION 1
Introduction ..11

SECTION 2
Expressions..13

SECTION 3
Scripts ...17

3-1 Object... 17
3-2 Page...17
3-3 Project ..17

SECTION 4
CX-Supervisor Script Language ...19

4-1 Points ... 20
4-1-1 Basic Point Assignment ..20
4-1-2 Further Point Assignment ... 20

4-2 Logic and Arithmetic...21
4-2-1 Arithmetic Operators ...21
4-2-2 Bitwise Operators.. 22
4-2-3 Logical Operators ..22
4-2-4 Relational Operators ...23

4-3 Control Statements ..24
4-3-1 Simple Conditional Statements...24
4-3-2 Nested Conditional Statements ..25
4-3-3 Case Select ..27
4-3-4 FOR... NEXT Loop..28
4-3-5 DO WHILE/UNTIL Loop..29

4-4 Subroutines ..29
4-4-1 Call..29
4-4-2 Return ..30

4-5 Punctuation ...30
4-5-1 Command String Delimiters ..30
4-5-2 Indentation ..30
4-5-3 Multiple Commands ..31
4-5-4 Parenthesis ...31
4-5-5 Quotation Marks..31
4-5-6 Remarks..31

4-6 Indirection within Script Commands and Expressions ...32
4-7 Point Arrays within Script Commands and Expressions ..33

Table of Contents

4

4-8 Using Aliases ... 33

SECTION 5
VBScript Language Reference ...37

5-1 List of Features: ... 37

SECTION 6
Functions and Methods...41

6-1 Object Commands ... 46
6-1-1 Current Object ... 46
6-1-2 Other Objects .. 46
6-1-3 Blink.. 47
6-1-4 Colour ... 48
6-1-5 Disable.. 49
6-1-6 Height ... 50
6-1-7 Horizontal Fill .. 50
6-1-8 Move... 51
6-1-9 Rotate ... 51
6-1-10 Vertical Fill .. 52
6-1-11 Visible ... 53
6-1-12 Width .. 53

6-2 Page Commands ... 54
6-2-1 Close Page ... 54

6-3 General Commands... 55
6-3-1 Exponential... 55
6-3-2 PlayOLE ... 55
6-3-3 DisplayPicture... 56
6-3-4 PlaySound .. 56
6-3-5 Rand ... 56
6-3-6 RunApplication ... 57
6-3-7 RunHelp.. 57
6-3-8 SetLanguage .. 58
6-3-9 SetNYLED .. 58
6-3-10 GetPerformanceInfo ... 59
6-3-11 ShutDown ... 60

6-4 Communications Commands... 60
6-4-1 CloseComponent.. 60
6-4-2 EnableOLE .. 60
6-4-3 EnablePLC .. 61
6-4-4 LaunchTroubleshooter ... 61
6-4-5 OpenComponent .. 61

6-5 Point Commands ... 62
6-5-1 CancelForce ... 62
6-5-2 CopyArray... 62
6-5-3 DisableGroup.. 63
6-5-4 DisablePoint ... 63
6-5-5 EditPoint ... 64

Table of Contents

5

6-5-6 EnableGroup...64
6-5-7 EnablePoint...65
6-5-8 Force...65
6-5-9 ForceReset ...65
6-5-10 ForceSet ..66
6-5-11 GetBit ..66
6-5-12 InitialiseArray ..66
6-5-13 InputPoint ...67
6-5-14 OutputPoint ...67
6-5-15 PointExists ..68
6-5-16 SetBit ..68

6-6 PLC Commands... 68
6-6-1 ClosePLC..68
6-6-2 DownloadPLCProgram ...69
6-6-3 GetPLCMode ..69
6-6-4 OpenPLC ..70
6-6-5 PLCCommsFailed...70
6-6-6 PLCMonitor ...71
6-6-7 SetPLCMode...71
6-6-8 SetPLCPhoneNumber ..71
6-6-9 UploadPLCProgram..72

6-7 Temperature Controller Commands...72
6-7-1 TCAutoTune..72
6-7-2 TCBackupMode ..73
6-7-3 TCGetStatusParameter ..73
6-7-4 TCRemoteLocal ..74
6-7-5 TCRequestStatus ...75
6-7-6 TCRspLsp ...75
6-7-7 TCRunStop ...76
6-7-8 TCSaveData ...76
6-7-9 TCSettingLevel1 ...76
6-7-10 TCReset..76

6-8 Alarm Commands ..77
6-8-1 AcknowledgeAlarm ...77
6-8-2 AcknowledgeAllAlarms ...77
6-8-3 AcknowledgeLatestAlarm ... 77
6-8-4 ClearAlarmHistory...78
6-8-5 CloseAlarmHistory ..78
6-8-6 CloseAlarmStatus ...78
6-8-7 DisplayAlarmHistory..78
6-8-8 DisplayAlarmStatus...79
6-8-9 EnableAlarms..79
6-8-10 IsAlarmAcknowledged ..79
6-8-11 IsAlarmActive ..80

6-9 File Commands ..80
6-9-1 CloseFile ... 80
6-9-2 CopyFile..81
6-9-3 DeleteFile..81

Table of Contents

6

6-9-4 EditFile.. 81
6-9-5 MoveFile ... 82
6-9-6 OpenFile ... 82
6-9-7 PrintFile .. 82
6-9-8 Read ... 83
6-9-9 ReadMessage .. 83
6-9-10 SelectFile.. 84
6-9-11 Write ... 85
6-9-12 WriteMessage... 85

6-10 Recipe Commands .. 86
6-10-1 DisplayRecipes .. 86
6-10-2 DownloadRecipe .. 86
6-10-3 UploadRecipe ... 86

6-11 Report Commands... 87
6-11-1 GenerateReport ... 87
6-11-2 PrintReport ... 87
6-11-3 ViewReport .. 88

6-12 Text Commands... 88
6-12-1 BCD .. 88
6-12-2 Bin .. 88
6-12-3 Chr.. 89
6-12-4 FormatText ... 89
6-12-5 GetTextLength.. 90
6-12-6 Hex ... 90
6-12-7 Left.. 91
6-12-8 Message ... 91
6-12-9 Mid.. 91
6-12-10 PrintMessage.. 92
6-12-11 Right ... 92
6-12-12 TextToValue ... 92
6-12-13 ValueToText ... 93

6-13 Event/Error Commands ... 93
6-13-1 ClearErrorLog ... 93
6-13-2 CloseErrorLog .. 93
6-13-3 DisplayErrorLog ... 93
6-13-4 EnableErrorLogging.. 94
6-13-5 LogError.. 94
6-13-6 LogEvent .. 94

6-14 Printer Commands... 95
6-14-1 ClearSpoolQueue ... 95
6-14-2 EnablePrinting .. 95
6-14-3 PrintActivePage .. 95
6-14-4 PrintPage.. 96
6-14-5 PrintScreen... 96
6-14-6 PrintSpoolQueue .. 97

6-15 Security Commands... 97
6-15-1 Login... 97
6-15-2 Logout... 97

7

6-15-3 SetupUsers ...98
6-15-4 ChangeUserPassword ..98

6-16 Data Logging Commands .. 98
6-16-1 AuditPoint..98
6-16-2 ClearLogFile..99
6-16-3 CloseLogFile ...99
6-16-4 CloseLogView ...99
6-16-5 ExportAndViewLog ...100
6-16-6 ExportLog..101
6-16-7 OpenLogFile ...102
6-16-8 OpenLogView ...102
6-16-9 StartAuditTrail ...103
6-16-10 StopAuditTrail ...103
6-16-11 StartLogging..104
6-16-12 StopLogging..104

6-17 Database Commands ..104
6-17-1 DBAddNew ...104
6-17-2 DBClose..105
6-17-3 DBDelete... 106
6-17-4 DBExecute ..106
6-17-5 DBGetLastError ..108
6-17-6 DBMove ..108
6-17-7 DBOpen ..110
6-17-8 DBProperty ...110
6-17-9 DBRead ..111
6-17-10 DBSchema..112
6-17-11 DBState...113
6-17-12 DBSupports...114
6-17-13 DBUpdate ...114
6-17-14 DBWrite...115

6-18 Serial Port Functions..116
6-18-1 InputCOMPort ...116
6-18-2 OutputCOMPort ..116
6-18-3 CloseCOMPort..117
6-18-4 OpenCOMPort ..117
6-18-5 SetupCOMPort..117

6-19 ActiveX Functions ..118
6-19-1 GetProperty...118
6-19-2 PutProperty ...119
6-19-3 Execute ...119
6-19-4 ExecuteVBScript ...120
6-19-5 ExecuteJScript ..120
6-19-6 ExecuteVBScriptFile ...120
6-19-7 ExecuteJScriptFile ..121
6-19-8 GenerateEvent..121

SECTION 7
Script Example ...123

8

7-1 Balloon Script... 123

SECTION 8
Colour Palette...127

Appendix A
OPC Communications Control ...129

A.1 Component Properties ... 129
A.2 Script Interface... 129
A.3 Functions ... 129

A.3.1 Value .. 129
A.3.2 Read ... 130
A.3.3 Write ... 130

Appendix B
CX-Server Communications Control..131

B.1 Functions ... 131
B.2 Value.. 132
B.3 Values.. 132
B.4 SetDefaultPLC ... 133
B.5 OpenPLC ... 133
B.6 ClosePLC... 133
B.7 Read .. 133
B.8 Write... 133
B.9 ReadArea... 134
B.10 WriteArea... 135
B.11 RunMode ... 135
B.12 TypeName ... 135
B.13 IsPointValid .. 135
B.14 PLC Memory Functions ... 135
B.15 ListPLCs... 136
B.16 ListPoints ... 136
B.17 IsBadQuality... 137
B.18 ClockRead ... 137
B.19 ClockWrite.. 137
B.20 RawFINS.. 137
B.21 Active ... 138
B.22 TCGetStatus .. 138
B.23 TCRemoteLocal ... 138
B.24 SetDeviceAddress .. 138
B.25 SetDeviceConfig .. 139
B.26 GetDeviceConfig.. 139
B.27 UploadProgram.. 140
B.28 DownloadProgram ... 140
B.29 Protect ... 140
B.30 LastErrorString... 141

9

Appendix C
JScript Features ...143

Appendix D
Obsolete Features..145

D.1 Windows 2000, NT, Windows ME, Windows 98 and Windows 95...145
D.2 Old project file formats ...145
D.4 DDE Commands ..146

D.4.1 DDEExecute ...146
D.4.2 DDEInitiate..146
D.4.3 DDEOpenLinks ...147
D.4.4 DDEPoke ..147
D.4.5 DDERequest ...148
D.4.6 DDETerminate ..149
D.4.7 DDETerminateAll .. 149
D.4.8 EnableDDE ...149

D.5 Graph Commands..150
D.5.1 ClearGraph ...150
D.5.2 StartGraph ..150
D.5.3 StopGraph...151
D.5.4 EditGraph..151
D.5.5 SaveGraph..152
D.5.6 Snapshot... 152
D.5.7 GetPointValue...153
D.5.8 GetSpoolCount ...153
D.5.9 SetPrinterConfig..153

Appendix E
Glossary of Terms..155

Revision history ...163

10

SECTION 1 Introduction

11

SECTION 1
Introduction

This reference manual describes the script language syntax as a supplement
to the CX-Supervisor User Manual. It provides detailed definition of the syntax
of CX-Supervisor scripts that drive project, page, object actions and CX-
Supervisor expressions as used by objects and scripts.
Typographic conventions used in the examples in this reference manual are
as follows:

• Script commands and reserved words are shown in the preferred case,
which may be either lower-, upper- or mixed-case.

• Points are shown in lower-case. Objects are shown in upper-case.
The following terms are used in this reference manual:

• Application. A set of files, containing an executable file, that carry out
certain tasks. This reference manual refers to the Microsoft Excel and
Microsoft Word for Windows applications.

• Constant. A point or object within a script that takes only one specific
value.

• Executable. A file that contains programs or commands, and has an
'*.EXE' extension.

• Nesting. To incorporate one or more IF THEN ELSE/ELSEIF ENDIF
statements inside a structure of the same kind.

• Operands. Constants or point variables.
• Operators. Relational, arithmetic, and logical statements, for instance '+',

'<=' or 'AND'.
• Or ('|'). The '|' symbol is used to represent 'or', where there are two or

more forms of the same syntax.
• Point Types. Either Boolean, Integer, Real or Text.
• Point Variable. A point or object within a script that may take different

values.
• Strings. Data in the form of text delimited by quotation marks (" "), which

can be assigned to a point.
• The '{' and '}' braces. Must be inserted around the argument command or

an error is reported. An error is reported if there are spaces between
braces.

• 'TRUE' and 'FALSE'. Refer exclusively to Boolean states, where Boolean
state 0 is 'FALSE' and Boolean state 1 is 'TRUE'.

SECTION 1 Introduction

12

SECTION 2 Expressions

13

SECTION 2
Expressions

This chapter describes the use of expressions within scripts.
Expressions consist of operators and operands:

• Operators are relational, arithmetic, logical and include many functions.
• Operands are constants or point variables.

Expressions can be used in a script as part of a statement (refer to chapter 3
Scripts, chapter 4 CX-Supervisor Script Language, and Chapter 6 Functions
and Methods). However expressions can be applied to the following actions
directly using the associated Expression: or Digital Expression: field:

• Blink.
• Close page.
• Colour Change (Analogue).
• Colour Change (Digital).
• Display Status Text.
• Display Text Point.
• Display Value.
• Edit point value (Analogue).
• Edit point value (Digital).
• Edit point value (Text).
• Enable/Disable.
• Horizontal move.
• Horizontal percentage fill.
• Resize height.
• Resize width.
• Rotate.
• Show page.
• Vertical move.
• Vertical percentage fill.
• Visible.

The following example of a simple expression contains a point ('redcars')
attached to a particular object with an appropriate object action, Resize
(Height). At runtime, once the value of the point has been met within the
attributes declared within the Active Expression Range/Required Height:
fields, the current object is resized accordingly. This example is an Integer or
Real example, whereby the value of the point either falls inside or outside the
specified range. In this example, the point 'redcars' must fall between 0 and
40 for the expression to be met.

SECTION 2 Expressions

14

The following example of a more complex expression contains a test on point
'position'. If 'position' is more than 300 in value, and 'position' is less than 450
in value, i.e. the value of 'position' is between 300 and 450, then the
expression has been met, and an action is initiated (in this instance the current
object is made visible if the expression is met). This example is a Boolean
example, whereby either the expression is met ('TRUE') or not met ('FALSE').
A Boolean value is always returned from a Digital Expression: field, as
opposed to an Expression: field, which returns an Integer or Real value.
Operators used within this example are fully described in chapter 4, Logic and
Arithmetic.

The following example of an expression contains a value point 'prompt' which
is included at the value position denoted by a '#' symbol.

Refer to the CX-Supervisor User Manual for detailed dialog descriptions.

SECTION 2 Expressions

15

Note: Boolean Expressions execute when the expression is TRUE so it can be said
that every Boolean expression has an inferred "== TRUE". Sometimes
Boolean expressions can be difficult to read e.g. "bMyFlagPoint" or "BitMask &
0x80. It can help maintenance if this "== TRUE" is explicitly specified e.g.
"bMyFlagPoint == TRUE" or "BitMask & 0x80 == TRUE".

Note: When using Boolean operators (e.g. ==, !=, &&, ||, |) never mix tests for
Boolean and non Boolean operands. For example never use "bMyFlagPoint
== 1" or "bMyFlagPoint == 0". Instead always test using the correct Boolean
constant i.e. "TRUE" or "FALSE" for CX-Supervisor scripts, or "True" and
"False" when using VBScript.

Note: On Condition scripts are only executed when the expression is TRUE.
Sometimes this leads to peculiar results, for example using $Second as it will
be executed when $Second changes to 59, and to 1 but not when it changes
to 0. To execute a condition script any time a point changes, force the
expression to always evaluate to TRUE for example "$Second || TRUE". This
works because the $Second forces the expression to be tested when the point
changes, but the || TRUE means the test will return TRUE regardless of the
value of the point.

Note: Use array points in On Condition expressions with caution. The expression
"MyArray[3] == 1" does not mean "execute every time the third element
changes to 1". It means execute when any element of MyArray changes and
the third element happens to be 1

Note: Using an array point without any index is the same as specifying element 0 i.e.
MyArray actually means MyArray[0] == 1

SECTION 2 Expressions

16

Object SECTION 3 Scripts

17

SECTION 3
Scripts

A CX-Supervisor script is a simple programming language used to manipulate
points. Scripts can be created at different levels, at object level, page level or
project level. Although the script code can be applied to all levels of script,
there are subtle differences, described in the following paragraphs.

3-1 Object
If a script is executed as a runtime action of an object, then the script can
affect the object of the action, or any other, depending on the actual content of
the script.

3-2 Page
Page scripts are concerned with manipulating points and graphical objects
that are used or included within that page. In other words page scripts are
used to drive a number of actions on the occurrence of a particular event.
These actions may manipulate several graphical objects on one page.

3-3 Project
Scripts can be applied to a project to manipulate points. These scripts are
associated with events that occur throughout the whole operating session

Project SECTION 3 Scripts

18

SECTION 4 CX-Supervisor Script Language

19

SECTION 4
CX-Supervisor Script Language

This chapter describes the CX-Supervisor script language syntax. It provides
a detailed definition of the syntax of CX-Supervisor scripts that drive project,
page and object actions, and CX-Supervisor expressions as used by objects
and scripts. In conjunction with the script functions and methods described in
Chapter 6, the CX-Supervisor script language provides a very powerful,
compiled, fast and full featured programming language.
The following table describes the script language syntax at a glance.

The 'Type' column refers to the types of script and expression the function can
be applied to. 'All' refers to both expressions and scripts. 'Scr' refers to scripts
only. 'OP' refers to Object and Page scripts only.

Function Name Function Type Type Remarks

&, |, ^, <<, >> bitwise operators All Applies bitwise expressions

(objects) statement OP Specifies an object name for
modification or test.

(points) statement All Specifies a point name for
modification or test.

+, -, *, /, %, =, ++,
--

arithmetic
operators

All Applies arithmetic
expressions.

<, >, <=, >=, ==, != relational
operators

All Applies relational
expressions.

AND logical operators All Applies logical expressions.

CALL statement All Call a subroutine

DO LOOP WHILE
UNTIL EXIT DO

statement Scr Script segment to be repeated

FALSE Boolean state Scr Applies Boolean expression.

FOR TO STEP
NEXT EXIT FOR

statement Scr Script segment to be repeated

IFTHEN
ELSE\ELSEIF
ENDIF

statement Scr Applies a test to a script.

OR logical operators All Applies logical expressions.

NOT logical operators All Applies logical expressions.

REM statement Scr Remarks on line or lines of
script.

RETURN statement Scr Stops sequential execution of
script.

SELECT CASE/
END SELECT

statement Scr Applied to complex tests.

TRUE Boolean state Scr Applies Boolean expression.

Points SECTION 4 CX-Supervisor Script Language

20

4-1 Points

4-1-1 Basic Point Assignment
Syntax

pointname = expression

Remarks

Typical Examples
count = 100

The Integer or Real point 'count' is assigned the value 100.
result = TRUE

The Boolean point 'result' is assigned the state ''TRUE''.
name = "Valve position"

The Text point 'name' is assigned the associated text, contained within
quotation marks.

References
Refer to chapter 4, Punctuation for details of the use of quotation marks.

4-1-2 Further Point Assignment
Syntax

pointname = expression

Remarks

Argument Description

pointname The point name to be assigned a value.

expression The value to be assigned to pointname. The expression
may be of type Boolean, Integer, Real or Text.

Note: When assigning Real (floating point) values to an Integer point the assignment
uses the 'Symetrical Rounding Down' (towards 0) standard. This means a
value of 4.1 would be assign a value 4. A value of -4.1 would asign a value of -
4.

Argument Description

pointname The point name to be assigned a value.

expression The value to be assigned to pointname. The expression
may be of type Boolean, Integer or Real and can include
other points, logical or arithmetical expressions.
Mathematical precedence is applied as follows:

• Parenthesis (highest).
• Unary minus and NOT logical operator.
• Multiplication, division and modulus.
• Addition and subtraction.
• Greater than, less than, greater than or equal to, and

less than or equal to relational operators.
• Shift Left (SHL) and Shift Right (SHR).
• Equal to and not equal to relational operators.
• Bitwise AND, XOR, OR.
• AND logical operator, OR logical operator (lowest).

Logic and Arithmetic SECTION 4 CX-Supervisor Script Language

21

Typical Examples
lift = height + rate/5.0

The Integer or Real point 'lift' is assigned the value calculated by the value of
point 'rate' divided by 5, plus the value of point 'height'. Precedence can be
changed by the introduction of parenthesis.

lift = lift - 0.2

The Integer or Real point 'lift' is assigned the value calculated by the current
value of point 'lift' minus 0.2.

distance = distance * time

The Integer or Real point 'distance' is assigned the value calculated by the
current value of point 'distance' multiplied by point 'time'.
References
Refer to chapter 4, Logic and Arithmetic for details of the use of arithmetic and
logic functions. Refer to chapter 4, Punctuation for details of the use of
parenthesis.

4-2 Logic and Arithmetic

4-2-1 Arithmetic Operators
Syntax

pointname = expression

Remarks

Typical Examples
result = 60 + 20/5

The Integer or Real point 'result' is assigned the value calculated by the value
of 20 divided by 5, plus 60.

lift = height + rate/5.0

The Integer or Real point 'lift' is assigned the value calculated by the value of
point 'rate' divided by 5, plus the value of point 'height'. Precedence can be
changed by the introduction of parenthesis.
References
Refer to chapter 4, Punctuation for details of the use of parenthesis.

Argument Description

pointname The point name to be assigned a value based on an
arithmetical expression.

expression The value to be assigned to pointname. The expression
may include the following operators with points and
constants:

• Addition '+'.
• Subtraction '-'.
• Multiplication '*'.
• Division '/'.
• Modulus '%'.
• Increment '++'.
• Decrement '--'.

Logic and Arithmetic SECTION 4 CX-Supervisor Script Language

22

4-2-2 Bitwise Operators
Syntax

pointname = expression

or
IF expression

or
DO WHILE expression

or
DO UNTIL expression

Remarks

Typical Examples
MSB = value & 128

The Boolean point 'MSB' is set 'TRUE' if the binary representation of 'value'
has the bit set which is worth 128.

Pattern = value << 2

The binary representation of 'value' is shifted left twice, and stored in 'pattern'.
Each Shift Left operation has the effect of doubling the value, so two shifts
quadruple the value.

4-2-3 Logical Operators
Syntax

pointname = expression

or
IF expression

or
DO WHILE expression

or
DO UNTIL expression

Remarks

Argument Description

pointname The pointname to be assigned a value based on the
bitwise operation.

expression The value to be assigned to pointname, or to be
evaluated as a Boolean expression. The expression can
include the following operators with points and constants:

• Bitwise AND, 'BITAND' or '&'.
• Bitwise OR, 'BITOR' or '|'.
• Bitwise XOR, 'XOR' or '^'.
• Bitwise Shift Left, 'SHL' or '<<'.
• Bitwise Shift Right, 'SHR' or '>>'.

Argument Description

Pointname The point name to be assigned a value based on a
logical expression.

Logic and Arithmetic SECTION 4 CX-Supervisor Script Language

23

Typical Examples
flag = temp AND speed

The Boolean point 'flag' is assigned a value based on the logic of point 'temp'
AND point 'speed'. If 'temp' and 'speed' are both not zero, 'flag' is set to 1, or
''TRUE''. A value of zero in either 'temp' or 'speed' supplies 'FALSE' or 0 to
'flag'.

IF flag AND temp AND speed THEN
flag = FALSE

ENDIF

The Boolean point 'flag' is assigned 'FALSE', on the condition that 'flag' AND
point 'temp' AND point 'speed' are all not zero. If the condition fails, then 'flag'
is not assigned 'FALSE'.
References
Refer to chapter 4, Control Statements for details of the use of the IF THEN
ELSE/ELSEIF ENDIF statements.

4-2-4 Relational Operators
Syntax

IF expression

or
DO WHILE expression

or
DO UNTIL expression

Remarks

Typical Example
IF fuel < 0 THEN

fuel = 0
ENDIF

Expression The Boolean value to be assigned to pointname or the
Boolean value forming a conditional statement. The
expression includes the following operators with points
and constants:

• And 'AND'.
• Or 'OR'.
• Not 'NOT'.

Argument Description

Argument Description

Expression The value forming a conditional statement. The
expression may include the following operators with
points and constants:

• Greater than '>'.
• Less than '<'.
• Greater than or equal to '>='.
• Less than or equal to '<='.
• Not equal to '!='.
• Equal to '=='.

Control Statements SECTION 4 CX-Supervisor Script Language

24

The point 'fuel' is assigned the value 0 on the condition that currently, 'fuel' is
less than 0. If 'fuel' is not less than 0, then it is not assigned the new value.
References
Refer to chapter 4, Control Statements for details of the use of the IF THEN
ELSE/ELSEIF ENDIF statements.

4-3 Control Statements

4-3-1 Simple Conditional Statements
Syntax

IF condition THEN
statementblock1

ENDIF

or
IF condition THEN

statementblock1
ELSE

statementblock2
ENDIF

Remarks

Typical Examples
IF fuel < 0 THEN

fuel = 0
ENDIF

Provided Integer point 'fuel' is less than 0, then it is assigned the value 0.
IF burner THEN

fuel = fuel - rate
ENDIF

Provided Boolean point 'burner' is ''TRUE'', then Integer point 'fuel' is assigned
a new value. It is also possible to apply 'IF burner == TRUE THEN' as the first
line, with identical results.

IF distance > 630 AND distance < 660 AND lift >= -3
THEN

winner = TRUE
burner = FALSE

ENDIF

Provided that Integer point 'distance' is greater in value than 630 AND
'distance' is less in value than 660 (i.e. 'distance' is a value between 630 and
660) AND point 'lift' is greater than or equal to -3, then Boolean points 'winner'
and 'burner' are assigned new values.

Argument Description

Condition The condition is made up of points and constants, using
relational, logical or arithmetical notation as a test. The
condition can evaluate Boolean state 'TRUE' and
'FALSE', Integer or Real numbers, or a text string.

Statementblock1 One or more statements which are performed if the
condition is met.

Statementblock2 One or more statements which are performed if the
condition is not met.

Control Statements SECTION 4 CX-Supervisor Script Language

25

IF burner AND fuel > 0 AND rate > 0 THEN
fuel = fuel - rate

ELSE
lift = 0
altitude = 0

ENDIF

Provided that Boolean point 'burner' is ''TRUE'' AND points 'fuel' and 'rate' are
greater in value than 0, then 'fuel' is assigned a new value. Otherwise points
'lift' and 'altitude' are assigned a new value.
References
Refer to chapter 4, Punctuation, Indentation for details on the layout of code.

4-3-2 Nested Conditional Statements
Syntax

IF conditionA THEN
statementblock1
IF conditionB THEN

statementblock3
ENDIF

ELSE
statementblock2

ENDIF

or
IF conditionA THEN

statementblock1
IF conditionB THEN

statementblock3
ELSE

statementblock4
ENDIF

ELSE
statementblock2

ENDIF

or
IF conditionA THEN

statementblock1
ELSEIF conditionB THEN

statementblock3
ENDIF

or
IF conditionA THEN

statementblock1
ELSE

statementblock2
IF conditionB THEN

statementblock3
ELSE

statementblock4
ENDIF

ENDIF

Remarks

Control Statements SECTION 4 CX-Supervisor Script Language

26

Typical Examples
IF burner AND fuel > 0 AND rate > 0 THEN

lift = lift + rate/5
ELSE

count = 1
IF altitude > 140 THEN

lift = lift - 0.2
ENDIF

ENDIF

Provided a successful evaluation has been made to points 'burner' AND 'fuel'
AND 'rate', point 'lift' is updated with the current value of rate divided by 5 plus
'lift'. Otherwise, a further evaluation is required on point 'altitude'. If 'altitude' is
currently greater than 140, then 'lift' is decremented by 0.2.

IF burner AND fuel > 0 AND rate > 0 THEN
lift = lift + rate/5

ELSE
IF altitude > 140 THEN

lift = lift - 0.2
ENDIF

ENDIF
IF burner AND fuel > 0 AND rate > 0 THEN

lift = lift + rate/5
ELSEIF altitude > 140 THEN

lift = lift - 0.2
ENDIF

These two examples are identical. The use of the ELSEIF statement
combines the ELSE statement and the IF/ENDIF statements for brevity. It is
acceptable to have more than one ELSEIF statement in an IF THEN ELSE/
ELSEIF ENDIF construct.
References

Argument Description

conditionA The condition is made up of points and constants, using
relational, logical or arithmetical notation as a test. The
condition can evaluate Boolean state 'TRUE' and
'FALSE', Integer or Real numbers, or a text string.

conditionB This condition is nested in the first condition, either on a
successful or unsuccessful evaluation of conditionA.
The condition is made up of points and constants, using
relational, logical or arithmetical notation as a test. The
condition can evaluate Boolean state 'TRUE' and
'FALSE', Integer or Real numbers, or a text string. There
is no limit to the number of nested conditional
statements.

statementblock1 One or more statements which are performed if
conditionA is met.

statementblock2 One or more statements which are performed if
conditionA is not met.

statementblock3 One or more statements which are performed if
conditionB is met.

statementblock4 One or more statements which are performed if
conditionB is not met.

Control Statements SECTION 4 CX-Supervisor Script Language

27

Refer to chapter 4, Punctuation for details of the use of indentation.

4-3-3 Case Select
Syntax

SELECT CASE expression
CASE expression

statementblock1
CASE expression

statementblock2
CASE expression

statementblock3
END SELECT

or
SELECT CASE expression

CASE expression
statementblock1

CASE expression
statementblock2

CASE ELSE
statementblock3

END SELECT

Remarks

Typical Examples
SELECT CASE colourvalue

CASE 1
colour (blue)

CASE 2
colour (green)

CASE 3
colour (cyan)

CASE ELSE
colour (0)

END SELECT

This example shows the assignment of a colour according to the value of a
point. The value of Integer point 'colourvalue' is evaluated and compared with
each case until a match is found. When a match is found, the sequence of
actions associated with the CASE statement is performed. When 'colourvalue'
is 1, the colour given to the current object is blue, when 'colourvalue' is 2, the
colour given to the current object is green, when 'colourvalue' is 3, the colour
given to the current object is cyan. If 'colourvalue' falls outside the integer
range 1-3, then the colour given is 0 (black). Like ELSE and ELSEIF, the
CASE ELSE statement is optional.

Argument Description

expression The expression may be a point, or a calculation of
constants and/or points that produces a result.

statementblock1 One or more statements that are only performed if the
preceding CASE expression is met.

statementblock2 One or more statements that are only performed if the
preceding CASE expression is met.

statementblock3 One or more statements that are only performed if the
preceding CASE expression is met.

Control Statements SECTION 4 CX-Supervisor Script Language

28

SELECT CASE TRUE
CASE temperature > 0 AND temperature <= 10

colour (blue)
CASE temperature > 10 AND temperature <= 20

colour (green)
CASE temperature > 20 AND temperature <= 30

colour (red)
CASE ELSE

colour (white)
ENDSELECT

In this example, instead of using a point as the condition as with the previous
example, the value is the condition - in this case Boolean state ''TRUE'' - with
the integer point 'temperature' being tested at each case. If it is ''TRUE'' that
'temperature' is between 0 and 10, then the current object is set to blue, or if it
is ''TRUE'' that 'temperature' is between 11 and 20, then the current object is
set to green, or if it is ''TRUE'' that 'temperature' is between 21 and 30, then
the current object is set to red. If none of these CASE statements are met,
then the current object is set to white. Like ELSE and ELSEIF, the CASE
ELSE statement is optional.
References
Refer to chapter 6, Object Commands for details of applying attributes to an
object and for the use of the Colour object command. Refer to chapter 8,
Colour Palette for details of the Colour Palette colour designation.

4-3-4 FOR... NEXT Loop
Syntax

FOR pointname = startpt TO endpt STEP steppt
statementblock1

NEXT

Remarks

Typical Examples
FOR loopcount = 0 TO 100

Ellipse_1.vertical%fill = loopcount
NEXT

In this example, 'Ellipse_1' is gradually filled 100 times.
FOR loopcount = 100 TO 0 STEP -5

Ellipse_1.vertical%fill = loopcount
NEXT

Argument Description

pointname The pointname to be used as the loop counter.

startpt The initial setting of pointname, and the first value to be
used through the loop.

endpt The last value to be used. The loop ends when
pointname exceeds this value.

steppt Amount to increase pointname by every pass of the loop.
Steppt can be negative to count backwards providing
startpt is larger than endpt. The STEP keyword and
variable may be omitted in which case pointname is
incremented at each pass of the loop (identical to adding
STEP 1).

Subroutines SECTION 4 CX-Supervisor Script Language

29

In this example, the fill for 'Ellipse_1' is gradually removed 20 times (100
times/-5).

4-3-5 DO WHILE/UNTIL Loop
Syntax

DO WHILE expression
statementblock

LOOP

or
DO

statementblock
LOOP WHILE expression

or
DO UNTIL expression

statementblock
LOOP

or
DO

statementblock
LOOP UNTIL expression

Remarks

Typical Example
DO WHILE dooropen == TRUE

Message ("You must shut the door before
continuing")

LOOP
DO

nextchar = Mid (Mystring, position, 1)
position = position + 1

LOOP UNTIL nextchar = "A"

4-4 Subroutines

4-4-1 Call
Syntax

CALL subroutine (arguments)

Remarks

Note: Loop statements should be used with caution, as they consume processor
time while they are running and some other parts of the system may not be
updated.

Argument Description

expression The expression may be a point, or a calculation of
constants and/or points that produces a result.

statementblock One or more statements to be executed multiple times
depending on expression.

Note: Loop statements should be used with caution, as they consume processor
time while they are running and some other parts of the system may not be
updated.

Punctuation SECTION 4 CX-Supervisor Script Language

30

Typical Example
CALL MySub ($Second, "Default", 2 + Int1)

4-4-2 Return
Syntax

RETURN

Typical Example
IF limit > 1000 THEN

RETURN
ELSE

value = limit
ENDIF
REM final part of script
POLYGON_1.COLOUR = red
ELLIPSE_5.WIDTH = value

The integer point 'limit' is tested for its value. If its value exceeds 1000, then
the condition is met, and the RETURN command is executed. All statements
after the RETURN command are ignored. If the value of integer point 'limit'
does not exceed 1000, then the RETURN command is not executed, and
statements after the RETURN command are performed.
References
Refer to the CX-Supervisor User Manual for the use of the RETURN
statement for Recipe validation.

4-5 Punctuation

4-5-1 Command String Delimiters
Description
Alternative string delimiters allowing string to contain quote " characters.
Syntax

{Some "string" text}

Typical Example
Message({Error: "Invalid Function" occurred})

The '{' and '}' braces inserted around the whole strings allows the actual text in
the string to contain quotes which will be displayed normally. They can be
used in any situation where quotes can be used whether or not embedded
quotes are required. However, for clarity the quote characters should be used
by preference.

4-5-2 Indentation
Typical Examples

IF burner AND fuel > 0 AND rate > 0 THEN
lift = lift + rate/5

Argument Description

subroutine The name of the subroutine defined at project level.

arguments The list of arguments required by the subroutine
separated by commas. Each argument may be a
pointname, constant, arithmetical or logical expression or
any valid combination.

Punctuation SECTION 4 CX-Supervisor Script Language

31

ELSE
IF altitude > 140 THEN
lift = lift - 0.2
ENDIF
ENDIF
IF burner AND fuel > 0 AND rate > 0 THEN

lift = lift + rate/5
ELSE

IF altitude > 140 THEN
lift = lift - 0.2

ENDIF
ENDIF

Both examples provide identical functionality, but the use of indentation, either
spaces or tabs to show the construction of the statements aids readability.
The use of the ELSEIF statement in this example was omitted for clarity.

4-5-3 Multiple Commands
Typical Examples

count = 75
result = log(count)
count = 75 : result = log(count)

Both examples provide identical functionality, but the use of the colon between
statements allows both to reside on the same line.

4-5-4 Parenthesis
Typical Examples

result = 20 + 30 * 40

The result is 1220.
result = (20 + 30) * 40

The values in parenthesis are calculated first. The result is 2000.
References
Refer to chapter 4, Logic and Arithmetic, Arithmetric Operations for further
details.

4-5-5 Quotation Marks
Typical Examples

name = "Valve position"

The Text point 'name' is assigned associated text, contained within quotation
marks. Quotation marks must be used in this instance.

Message("This text to be displayed as a message.")

Passing static text as arguments to functions.
BlueCarsAck = IsAlarmAcknowledged("BLUEPAINT")

The point 'BlueCarsAck' is assigned a Boolean state based on the alarm
'BLUEPAINT'. Quotation marks must be used for an alarm name.

4-5-6 Remarks
Syntax

REM | rem comment

or
'comment

Indirection within Script Commands and Expressions SECTION 4 CX-Supervisor

32

Remarks

Typical Examples
REM The following statement adds two numbers
result = 45 + 754
result = 45 + 754 'add two numbers

4-6 Indirection within Script Commands and Expressions
It is possible to use text points directly or indirectly in place of literal string
arguments within scripts and expressions. For instance, each of the following
commands has the same effect:

• Using a string literal;
PlayOLE("ole_1", 0)

• Using a textpoint directly;
textpoint = "ole_1"
PlayOLE(textpoint, 0)

• Using a textpoint indirectly via the '^' notation.
text = "ole_1"
textpoint = "text"
PlayOLE(^textpoint, 0)

It is possible to use text points indirectly in place of point name arguments
within script commands. For instance, each of the following commands has
the same effect:

• Using a point name directly;
verbnumber = 0
PlayOLE("ole_1", verbnumber)

• Using a textpoint indirectly via the '^' notation.
verbnumber = 0
textpoint = "verbnumber"
PlayOLE("ole_1", ^textpoint)

An example using Indirection
The value of point indirection can be seen in a situation where it is necessary
to dynamically change the pointname that an object is linked to. In the
following example a toggle button is configured to control the Boolean state of
one of four points:

• The four Boolean points to be controlled are called 'motor1', 'motor2',
'motor3' and 'motor4'.

• The text point 'textpoint' is used to store the name of the Boolean point to
be controlled.

• The text point 'text' is used to store the string value of the integer point
'index'

• The integer point 'index' (which has a range 1-4) is used to dynamically
change the point being controlled.

• Access to any of the four Boolean points 'motor1', 'motor2', 'motor3',
'motor4' can be achieved by applying indirection to 'textpoint' using the '^'
notation and changing the contents of 'textpoint'.

For instance, in order to dynamically change the Boolean point a toggle button
is linked to follow these steps.

Argument Type Description

Comment - - - Descriptive text.

Point Arrays within Script Commands and Expressions SECTION 4 CX-Supervisor

33

1, 2, 3… 1. Link the toggle button to a textpoint using indirection e.g. ^textpoint.
2. Link the following script code to run as required. e.g. on clicking a button.

• Text = ValueToText(index)
• TextPoint = "motor" + text

3. The ValueToText function converts the integer value of the point 'index'
into a string held in the textpoint 'text'. Therefore the point 'text' contains
either '1', '2', '3' or '4'. The expression 'motor' + text appends the contents
of the point 'text' to the literal string 'motor'. Therefore 'textpoint' contains
either 'motor1', 'motor2', 'motor3' or 'motor4' dependant on the value of
'index'. Change the value of the 'index' to determine which Boolean point
to control. e.g. via the Edit Point Value (Analogue) animation.

4-7 Point Arrays within Script Commands and Expressions
It is possible to access the elements of a point array directly or indirectly from
within scripts or expressions.

• Setting the value of an array point directly;
arraypoint[2] = 30

• Getting the value of an array point directly;
value = arraypoint[2]

• "Setting the value of an array point using indirection;
textpoint = "arraypoint"
^textpoint[2] = 30

• Getting the value of an array point using indirection;
textpoint = "arraypoint"
value = ^textpoint[2]

An example using Point Arrays
The value of array points can be seen in a situation where it is necessary to
dynamically change the pointname that an object is linked to. In the following
example a toggle button is configured to control the Boolean state of one of
four elements of an array point.
The Boolean array point 'motor' is configured to contain 4 elements.
The integer point 'index' (which has a range 0-3) is used to dynamically
change the element of the point being controlled.
In order to dynamically change the element of a Boolean point that a toggle
button is linked to follow these steps.

1, 2, 3… 1. Link the toggle button to an array point. e.g. 'motor[index]'.
2. Change the value of the 'index' to determine which element of the Boolean

point to control. e.g. via the Edit Point Value (Analogue) animation.

4-8 Using Aliases
This facility is used to declare an alias - that is, to define a text string that can
be used in place of another text string or a number within any script or
expression. The Alias Definitions dialog is displayed by selecting the "Alias
Definition..." option from the Project menu. It can also be displayed if
"Aliases..." is selected from the script editor. The dialog displays either the
User defined aliases or the preset System aliases and is toggled between
these two displays by pressing the User/System Alias button.

Using Aliases SECTION 4 CX-Supervisor Script Language

34

The following illustration shows the Alias Definitions dialog displaying a
number of User defined aliases. The System aliases are pre-defined and can
not be edited or added to.

Syntax:
@AliasNameAlias definition 'optional comment

Remarks:

The @ symbol at the beginning of each line initiates each alias command. For
example, the text string @SomePoint could be used to represent any
sequence of characters in a script or expression - e.g. it could be defined as:

@SomePoint = InArray[1]

or even
@SomePoint = Inarray[1] + Inarray[2] / 2

This is an easy way of identifying the individual members of array points. It
can also be used to associate names with numbers, for example,

@SecondsPerDay = 86400

Alias definitions are stored in a simple text file in the project directory, called
<project name>.pre. The format of the file consists of any number of lines
such as:

@Test1 = InArray[12] * 10

i.e. an @ symbol followed by the name of the alias, then an equals sign (or
space), followed by the definition of the alias. Anything that follows the last
apostrophe (') symbol on a line is interpreted as a comment. Any line which
does not start with the @ symbol is also assumed to be a comment.
Typical Examples

Declare boiler temperatures
@BoilerTemp1 = InArray[0] ' for boiler room 1
@BoilerTemp2 = InArray[1] ' for boiler room 2

Argument Type Description

@AliasName string The string name of the alias

Alias definition string This is a string representing the actual text or
expression of the expanded alias.

' comment string This is an optional comment.

Using Aliases SECTION 4 CX-Supervisor Script Language

35

@SecondsPerMinute = 60 ' sets duration

Aliases may also be used to create a complicated expression such as
@HYPOTENUSEsqrt(Opposite * Opposite + Adjacent *
Adjacent) 'Calculates length of Hypotenuse

This can be used in a script in the following way:
Opposite = 8.45
Adjacent = 9.756
length = @HYPOTENUSE

where Opposite, Adjacent and length are all REAL points.
Note: Changing an alias definition after it has been used in an expression or script

will not automatically change the result in the script. The appropriate script or
expression where that alias is used must be accessed and recompiled by
pressing the OK button in order to apply the changes.

Using Aliases SECTION 4 CX-Supervisor Script Language

36

List of Features: SECTION 5 VBScript Language Reference

37

SECTION 5
VBScript Language Reference

This chapter is a reference for the syntax of Microsoft Visual Basic scripting
language called VBScript. These features are provided by the Windows
Scripting Host, included by default with Windows and Internet Explorer.
For a full User Guide, Language reference and details of the latest versions
and support contact Microsoft at http://msdn.microsoft.com

5-1 List of Features:
Category Keyword / Feature

Array handling Array
Dim, Private, Public, ReDim
IsArray
Erase
LBound, UBound

Assignments Set

Comments Comments using ' or Rem

Constants/Literals Empty
Nothing
Null
True, False

Control flow Do…Loop
For…Next
For Each…Next
If…Then…Else
Select Case
While…Wend
With

Conversions Abs
Asc, AscB, AscW
Chr, ChrB, ChrW
CBool, CByte
CCur, Cdate
CDbl, CInt
CLng, CSng, CStr
DataSerial, DateValue
Hex, Oct
Fix, Int
Sgn
TimeSerial, TimeValue

Date / Times Date, Time
DateAdd, DateDiff, DatePart
DateSerial, DateValue
Day, Month, MonthName
Weekday, weekdayName, Year
Hour, Minute, Second
Now
TimeSerial, TimeValue

List of Features: SECTION 5 VBScript Language Reference

38

Declarations Class
Const
Dim, Private, Public, ReDim
Function, Sub
Property Get, Property Let, Property Set

Error Handing On Error
Err

Expressions Eval
Excute
RegExp
Replace
Test

Formatting Strings FormatCurrency
FormatDateTime
FormatNumber
FormatPercent

Input / Output InputBox
LoadPicture
MsgBox

Literals Empty
False
Nothing
Null
True

Math Atn, Cos, Sin, Tan
Exp, Log, Sqr
Randomize, Rnd

Miscellaneous Eval Function
Execute Statement
RGB Function

Objects CreateObject
Err Object
GetObject
RegExp

Operators Addition (+), Subtraction (-)
Exporentiation (^)
Modulus arithmetic (Mod)
Multiplication (*), Division (/)
Integer Division (\)
Negation (-)
String concatentation (&)
Equality (=), Inequality (<>)
Less Than (<), LessThan or Equal(<+)
Greater Than (>)
Greater Than or Equal To (>=)
Is
And, Or, Xor
Eqv, Imp

Options Option Explicit

Category Keyword / Feature

List of Features: SECTION 5 VBScript Language Reference

39

Procedures Call
Function, Sub
Property Get, Property Let, Property Set

Rounding Abs
Int, Fix, Round
Sgn

Script Engine ID ScriptEngine
ScriptEngineBuildVersion
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Strings Asc, AscB, AscW
Chr, ChrB, ChrW
Filter, InStr, InStrB
InStrRev
Join
Len, LenB
LCase, UCase
Left, LeftB
Mid, MidB
Right, RightB
Replace
Space
Split
StrComp
String
StrReverse
LTrim, RTrim, Trim

Variants IsArray
IsDate
IsEmpty
IsNull
IsNumeric
IsObject
TypeName
VarType

Category Keyword / Feature

List of Features: SECTION 5 VBScript Language Reference

40

SECTION 6 Functions and Methods

41

SECTION 6
Functions and Methods

This chapter describes the Functions and Methods available to the scripting
language. In most cases, this can be CX-Supervisor script, VBScript or
JScript.
The following table describes the Functions and Methods at a glance.

Function Name Function Type Type Remarks

AcknowledgeAlarm alarm command Scr Acknowledges an alarm.

AcknowledgeAllAlarms alarm command Scr Acknowledges all alarms.

AcknowledgeLatestAlarm alarm command Scr Acknowledge the latest alarm.

Acos unary function All Applies unary expression.

Asin unary function All Applies unary expression.

Atan unary function All Applies unary expression.

AuditPoint Data Logging
command

Scr Logs a point value into the CFR
database.

CancelForce point command Scr Removes the forcing of values on
a point.

ChangeUserPassword Data Logging
command

Scr Changes a user’s Windows
password.

Chr text command All Displays a character based on the
ASCII character set.

ClearAlarmHistory alarm command All Clears the alarm history.

ClearErrorLog event/error
commands

All Clears the error log.

ClearLogFile Data Logging
command

Scr Clears a data log file

ClearSpoolQueue printer
command

All Discards any queued messages
or alarms.

close object command Scr Closes a specified page.

CloseAlarmHistory alarm command All Closes the current alarm history.

CloseAlarmStatus alarm command Scr Closes the current alarm status.

CloseComponent comms
command

All Closes a component for a PLC
(e.g. CX-Server components).

CloseErrorLog error command Scr Closes the currently open Error
Log.

CloseFile file command Scr Closes the open file.

CloseLogFile Data Logging
command

Scr Closes a data log file

CloseLogView Data Logging
command

Scr Closes the log viewer

ClosePLC PLC command Scr Close communications with a
PLC.

colour object command OP Specifies a colour to an object.

CopyArray point command All Copies the content of an array.

SECTION 6 Functions and Methods

42

CopyFile file command Scr Copies a specified file.

cos unary function All Applies unary expression.

DeleteFile file command Scr Deletes the specified file.

disable object command OP Disables an object.

DisableGroup point command All Prevents a group of points to be
read or written.

DisablePoint point command Scr Disables communications to a
point.

display object command Scr Displays a specified page.

DisplayAlarmHistory alarm command Scr Displays the current alarm history.

DisplayAlarmStatus alarm command Scr Displays the alarm status of all
current alarms.

DisplayErrorLog event command Scr Displays the current Error Log.

DisplayPicture general
command

Scr Reload an image for a picture
object

DisplayRecipes recipe command Scr View the current recipes in the
project.

DownloadPLCProgram PLC command All Downloads specified files to the
PLC.

DownloadRecipe recipe command Scr Downloads a specified recipe.

EditFile file command All Edits a specified file.

EnableAlarms alarm command All Enables alarm functions.

EnableErrorLogging error command Scr All actions become subject to
Error Logging.

EnableGroup point command All Permits a group of points to be
read or written.

EnableOLE comms
command

Scr Allows use of OLE functions.

EnablePLC comms
command

Scr Allows use of PLC functions.

EnablePoint point command Scr Enables communications to a
point.

EnablePrinting printer
command

All Permits printing of Alarms or
messages.

ExportAndViewLog Data Logging
command

Scr Exports data log and views

ExportLog Data Logging
command

Scr Exports data log

FileExists file command All Specifies the existence of a file.

Force point command Scr Locks the value of a point.

ForceReset point command Scr Sets a point value to 0.

ForceSet point command Scr Sets a point value to 1.

FormatText text command All Inserts text with standard 'C'
formatting characters.

Function Name Function Type Type Remarks

SECTION 6 Functions and Methods

43

GenerateReport report command All Produces a report based on a
report template.

GetBit point command All Retrieves a bit from a point.

GetPerformanceInfo general
command

All Retrieves internal performance
and diagnostic values.

GetPLCMode PLC command All Retrieves the mode of a PLC.

GetTextLength text command All Specifies the number of
characters in a text point.

height object command OP Specifies the height of an object.

horizontal%fill object command OP Specifies the horizontal fill of an
object.

InputPoint point command Scr Reads a value from a point.

IsAlarmAcknowledged alarm command Scr Tests if a specified alarm has
been acknowledged.

IsAlarmActive alarm command Scr Tests if a specified alarm is
currently active.

LaunchTroubleshooter comms
command

Scr Launches SGW tool for
troubleshooting controllers

Left statement Scr Extracts characters from the left of
a string

log unary function All Calculates the natural logarithm
on a number.

log10 unary function All Calculates the base-10 logarithm
on a number.

LogError error command Scr Logs an error message with the
error logger.

LogEvent error command Scr Logs an event message with the
error logger.

Login security
command

Scr Logs a user into a run-time
application.

Logout security
command

Scr Logs a user out of a run-time
application.

Message text command Scr Outputs a string in a message
box.

Mid text command Scr Extracts a substring from a string.

move object command OP Moves an object.

MoveFile file command Scr Moves the specified file.

OpenComponent comms
command

All Opens a component for a PLC
(e.g. CX-Server components).

OpenFile file command Scr Opens the specified file.

OpenLogFile Data Logging
command

Scr Opens a data log file

OpenLogView Data Logging
command

Scr Opens the Data Log Viewer

Function Name Function Type Type Remarks

SECTION 6 Functions and Methods

44

OpenPLC PLC command Scr Opens communications with a
PLC.

OutputPoint point command Scr Displays the current value of a
point.

PlayOLE gen. command Scr Plays an OLE object.

PlaySound gen. command Scr Plays a sound file.

PLCCommsFailed PLC command All Specifies if the PLC
communications have failed.

PLCMonitor PLC command Scr Monitors a PLC.

PointExists point command All Specifies the existence of a point.

PrintActivePage gen. command Scr Prints the currently active page.

PrintFile file command Scr Prints the specified file.

PrintMessage text command All Prints messages to the configured
'Alarm/message printer'.

PrintPage gen. command Scr Prints the specified page.

PrintReport report command All Prints a report

PrintScreen gen. command Scr Prints the current display screen.

PrintSpoolQueue printer
command

All Prints all queued alarms or
messages.

Rand gen. command Scr Calculates a random number.

Read file command Scr Reads data from an open file into
a point.

ReadMessage file command All Reads text from an external file.

Right text command Scr Extracts characters from the right
of a string.

rotate object command OP Rotates an object.

RunApplication gen. command Scr Runs the specified application.

RunHelp gen. command Scr Runs the specified help file.

SelectFile file command All Specifies a file name and path.

SetBit point command All Sets a specific bit from a point.

SetNYLED gen. command Scr Sets the hardware LEDs on NY
IPC

SetPLCMode PLC command All Sets the mode of a PLC.

SetPLCPhoneNumber PLC command All Sets a phone number to a PLC.

SetupUsers security
command

Scr Defines users and passwords for
Login.

ShutDown gen. command Scr Terminates CX-Supervisor.

sin unary function All Applies unary expression.

sqrt unary function All Applies unary expression.

StartAuditTrail Data Logging
command

Scr Starts Audit Trail logging.

Function Name Function Type Type Remarks

SECTION 6 Functions and Methods

45

The 'Type' column refers to the types of script and expression the function can
be applied to. 'All' refers to both expressions and scripts. 'Scr' refers to scripts
only. 'OP' refers to Object and Page scripts only.

StopAuditTrail Data Logging
command

Scr Stops Audit Trail logging.

StartLogging Data Logging
command

Scr Starts a data set logging.

StopLogging Data Logging
command

Scr Stops a data set logging.

tan unary function All Applies unary expression.

TCAutoTune temp. controller
command

All Starts or stops a temperature
controller auto-tune operation.

TCBackupMode temp. controller
command

All Defines how a temperature
controller stores internal
variables.

TCGetStatusParameter temp. controller
command

All Retrieves the temperature
controller status parameter.

TCRemoteLocal temp. controller
command

All Defines the operational mode of a
temperature controller.

TCRequestStatus temp. controller
command

All Retrieves the temperature
controller status.

TCReset temp. controller
command

All Resets the temperature controller.

TCRspLsp temp. controller
command

All Defines the setpoint mode used
by the temperature controller.

TCRunStop temp. controller
command

All Defines either auto-output mode
shift or manual output mode shift.

TCSaveData temp. controller
command

All Saves data associated with the
temperature controller.

TCSettingLevel1 temp. controller
command

All Performs a settinglevel function
for the temperature controller.

TextToValue text command Scr Converts a string to a numerical
point value.

UploadPLCProgram PLC command All Uploads programs in the PLC to
specified files.

ValueToText text command Scr Converts a numerical value into a
text point.

vertical%fill object command OP Specifies the vertical fill of an
object.

ViewReport report command All Displays a report

visible object command OP Toggles the visibility of an object.

width object command OP Specifies the width of an object.

Write file command Scr Writes a value to an open file.

WriteMessage file command All Writes text to an external file.

Function Name Function Type Type Remarks

Object Commands SECTION 6 Functions and Methods

46

6-1 Object Commands
Object commands control native CX-Supervisor graphical objects, like
rectangles or lines.

6-1-1 Current Object
Syntax

objectcommand

Remarks

Typical Example
colour (red)

The current object is specified as red in colour.
References
Refer to:

• Chapter 6, Blink for use of the blink command.
• Chapter 6, Colour for use of the colour command.
• Chapter 6, Disable for use of the disable command.
• Chapter 6, Height for use of the height command.
• Chapter 6, Horizontal Fill for use of the horizontal fill command.
• Chapter 6, Move for use of the move command.
• Chapter 6, Rotate for use of the rotate command.
• Chapter 6,Vertical Fill for use of the vertical fill command.
• Chapter 6, Visible for use of the visible command.
• Chapter 6, Width for use of the width command.

"The CX-Supervisor User Manual for details of the Animation Editor.

6-1-2 Other Objects
Syntax

Note: Objects are native to CX-Supervisor and therefore cannot be accessed or
commands issued from external script languages, like VBScript or Jscript.

Argument Description

"The expression can be made up of the following
commands, which are also described in chapter 6,
Object Commands:

• Colour command.
• Disable command.
• Visible command.
• Move command.
• Rotate command.
• Vertical fill command.
• Horizontal fill command.
• Height command.
• Width command.

The content of the commands are made up of
arithmetical or logical expressions, x and y co-ordinates,
or references, varying between commands. The colour
command requires a colour identifier.

Object Commands SECTION 6 Functions and Methods

47

objectname.objectcommand
pagename.objectname.objectcommand

Remarks

Typical Examples
POLYGON_1.colour (red)
POLYGON_1.colour = red

The specified object, 'POLYGON_1' is set to be red in colour.
References
Refer to:

• CX-Supervisor User Manual for details of object names.
• Chapter 6, Blink for use of the blink command.
• Chapter 6, Colour for use of the colour command.
• Chapter 6, Disable for use of the disable command.
• Chapter 6, Height for use of the height command.
• Chapter 6, Horizontal Fill for use of the horizontal fill command.
• Chapter 6, Move for use of the move command.
• Chapter 6, Rotate for use of the rotate command.
• Chapter 6, Vertical Fill for use of the vertical fill command.
• Chapter 6, Visible for use of the visible command.
• Chapter 6, Width for use of the width command.

6-1-3 Blink
Syntax

objectname.blink (colour, status)

Argument Description

objectname This is the name of the object. The object is provided
with a generic name on creation, which can be amended
later to something more meaningful. The script is
automatically updated following any amendment to the
object name.

objectcommand This can be made up of the following commands, which
are described in chapter 6, Object Commends:

• Blink command
• Colour command.
• Disable command.
• Visible command.
• Move command.
• Rotate command.
• Vertical fill command.
• Horizontal fill command.
• Height command.
• Width command.

The content of the commands are made up arithmetical
or logical expressions, x and y co-ordinates, or
references, varying between commands. The colour
command requires a colour identifier.

Object Commands SECTION 6 Functions and Methods

48

Remarks

Typical Examples
blink (red, TRUE)

Start blinking red.
LINE_1.blink(OxFFFFOO, status)

The object LINE_1 starts or stops blinking yellow depending on value of
Boolean point 'status'.

6-1-4 Colour
Syntax

objectname.colour (expression, context)
colour (expression, context)

or
objectname.colour (colourID, context)
colour (colourID, context)
An equals sign may be used as an alternative to
brackets:
objectname.colour = expression
colour = expression

or
objectname.colour = colourID
colour = expression

Either spelling 'colour' or 'color' is acceptable.

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

colour Colour to blink to. Some colour values within the colour
palette have a meaningful colourID. This takes the form
of the colour name, e.g., 'black' or 'yellow'. Alternatively,
an integer value of 0x1000000 can be added to a
number 0-65 to select a palette entry.

status This argument may be omitted. May be on of:
TRUE - turn blinking On.
FALSE - turn blinking Off.
If omitted, TRUE is assumed.

Note: An equals sign may also be used for most other object commands, even if it is
not directly specified in this manual.

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression The expression may be an Integer point, or a calculation
of constants and/or points that produce an Integer value
between 0 and 16777215. This is the desired colour's
RGB value. (format is 0xBBGGRR).

Object Commands SECTION 6 Functions and Methods

49

Typical Examples
TEXT_3.colour (blue)

or
TEXT_3.colour = blue

The object 'TEXT_3' is set to blue.
BALL.colour (35 + 0x1000000)

The object 'BALL' is set to colour 35 from the colour palette.
BALL.colour (0xFF0000,@FILL)

The object 'BALL' is set to blue.
shade = tint1 + tint2
IF shade > 65 OR shade < 0 THEN

shade = 0
ENDIF
ELLIPSE_1.colour (shade + 0x1000000)

The point 'shade' is set to a value based on 'tint1' and 'tint2', and is tested first
to ensure that it is a value between 0 and 65. If 'shade' falls outside this range,
then it cannot be applied as a colour to an object, and is therefore reset to 0
(or black). ELLIPSE_1' is set to the palette colour of the value of shade.
References
Refer to chapter 6, Colour Palette for details of colour names and colour
numbers.

6-1-5 Disable
Syntax

objectname.disable (expression)

Remarks

Typical Examples
disable (TRUE)

The current pushbutton object to which this example applies is disabled.

colourID Some colour values within the colour palette have a
meaningful colourID. This takes the form of the colour
name, e.g., 'black' or 'yellow'. Alternatively, an integer
value of 0x1000000 can be added to a number 0-65 to
select a palette entry.

context This argument is optional an may be omitted. It defines
which part of the object has it's colour changed. May be
one or more of:
@FILL - change fill colour
@FRAME - changes frame colour
If omitted both are changed. Equivalent to @FILL |
@FRAME

Argument Description

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression The expression can be made up of points resulting in
'TRUE' or 'FALSE'.

Object Commands SECTION 6 Functions and Methods

50

PUSH_8.disable (count AND flag)

The selectable object 'PUSH_8' is disabled provided Integer point 'count' AND
Boolean point 'flag' return ''TRUE''.

6-1-6 Height
Syntax

objectname.height (expression, context)
objectname.height = expression

Remarks

Typical Examples
height (100)

or
height = 100

The height of the current object is set to 100.
LINE_1.height (stretch/offset, @top)

The height of object 'LINE_1' is changed to the value calculated by points
'stretch' and 'offset', keeping the top where it is.

6-1-7 Horizontal Fill
Syntax

objectname.horizontal%fill (expression, context)

Remarks

Typical Examples

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is a value, point or an arithmetic expression
returning a new height value in pixels.

context This argument is optional and may be omitted. It defines
which part of the object is the datum, and remains static.
May be one of:
@TOP - uses object top as datum.
@CENTRE - uses object centre as datum
@BOTTOM - uses object bottom as datum
If omitted @CENTRE is assumed

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is an arithmetic expression that must return a value
between 0 and 100. On return of a valid result, the fill
commences from left to right.

context This argument is optional and may be omitted. It defines
which side of the object is filled from. May be one of:
@LEFT - fill from the left
@RIGHT - fill from the right
If omitted, @LEFT is assumed

Object Commands SECTION 6 Functions and Methods

51

horizontal%fill (50)

The current object to which this example applies is filled by 50%.
ELLIPSE_1.horizontal%fill (GAS_LEVEL, @RIGHT)

The object 'ELLIPSE_1' is filled from the right, provided the point
'GAS_LEVEL' returns a valid result, between 0 and 100.

6-1-8 Move
Syntax

objectname.move (x co-ordinate, y co-ordinate)

Remarks

Typical Examples
move (100, 200)

The current object to which this example applies is moved to the specified
position.

POLYGON_1.move (xpos, ypos/5)

The object 'POLYGON_1' is moved to the position specified by points 'xpos'
and 'ypos' divided by 5.

6-1-9 Rotate
Syntax

objectname.rotate (angle, context, fixed, xcoord,
ycoord)

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

x co-ordinate
y co-ordinate

The x and y co-ordinates of the origin of the object at its
resultant position in pixels are specified in the form (x, y).
Points alone or as part of an arithmetic expression may
be used as a basis for this expression.

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

angle The angle of rotation can range between 0 to 360 in a
clockwise direction. Points alone, or as part of an
arithmetic expression may be used as an angle.

Object Commands SECTION 6 Functions and Methods

52

Typical Examples
rotate (45)

The current object to which this example applies is rotated by 45 .
RECTANGLE_1.rotate(tilt, @USERDEFINED, 0, -100, 10)

The object 'RECTANGLE_1' is rotated by the value of 'tilt', about a point -100,
10 relative to the objects current position.

rotate (a * sin(b))

The current object is rotated based on the result of an arithmetic expression
involving points named 'a and 'b'.

6-1-10 Vertical Fill
Syntax

objectname.vertical%fill (expression, context)

Remarks

context This argument is not required and may be omitted. May
be one of:
@TOPLEFT - rotate around top left of object
@TOPCENTRE -rotate around top centre of object
@TOPRIGHT - rotate around top right of object
@CENTRELEFT - rotate around centre left of object
@CENTRE - rotate around centre of object
@CENTRERIGHT - rotate around centre right of object
@BOTTOMLEFT - rotate around bottom left of object
@BOTTEMCENTRE - rotate around bottom centre of
object
@ BOTTOMRIGHT - rotate around bottom right of object
@USERDEFINED - user defined point specified in
xcoord and ycoord.

fixed This argument may be omitted. If this boolean value is
true, the rotation origin is fixed to the screen, even if the
object is moved. Otherwise, the rotation origin is relative
to object position.

xcoord
ycoord

Only required if @USERDEFINED is specified. These
integer variables specify the rotation origin in pixels

Argument Description

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is an arithmetic expression that must return a value
between 0 and 100. On return of a valid result, the fill
commences from bottom to top.

context This argument may be omitted. May be one of:
@DOWN - Fill object downwards
@UP - Fill object upwards
If omitted, @UP is assumed

Object Commands SECTION 6 Functions and Methods

53

Typical Examples
vertical%fill (50)

The current object to which this example applies is filled by 50%.
ELLIPSE_1.vertical%fill (OIL_QUANTITY, @DOWN)

The object 'ELLIPSE_1' is filled provided the point 'OIL QUANTITY' returns a
valid result, between 0 and 100.

6-1-11 Visible
Syntax

objectname.visible (expression)

Remarks

Typical Examples
visible (TRUE)

The current object to which this example applies becomes visible.
POLYLINE_8.visible (count AND flag)

The object 'POLYLINE_8' is made visible provided Integer point 'count' AND
Boolean point 'flag' return ''TRUE''.

6-1-12 Width
Syntax

objectname.width (expression, context)

Remarks

Typical Examples
width (150)

The width of the current object is set to 150.
LINE_1.width (squeeze/offset, @RIGHT)

The width of object 'LINE_1' is changed to the value calculated by points
'squeeze' and 'offset', keeping the rightmost point fixed.

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression The expression can be made up of points resulting in
'TRUE' or 'FALSE'.

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is a value, point or an arithmetic expression
returning a new width value in pixels.

context This argument may be omitted. May be one of:
@LEFT - use left of object as datum.
@CENTRE - use centre of object as datum.
@RIGHT - use right of object as datum.
If omitted, @CENTRE is assumed.

Page Commands SECTION 6 Functions and Methods

54

6-2 Page Commands
Display Page
Syntax

display ("pagename")

or
display ("pagename", X, Y)

Remarks

Typical Examples
display ("CAR")

The page 'CAR.PAG' is displayed.
textpoint = "CAR"
display(textpoint)

The page 'CAR.PAG' is displayed.
display("CAR", 100, 200)

The page 'CAR.PAG' is displayed in a custom position, 100 pixels across from
the left of the main window and 200 pixels down from the top.

6-2-1 Close Page
Syntax

close ("pagename")

Remarks

Typical Examples
close("CAR")

The page 'CAR.PAG' is closed.
textpoint = "CAR"
close(textpoint)

The page 'CAR.PAG' is closed.

Argument Description

pagename This is the name of the page for display, based on its
filename without the file extension, e.g. the pagename for
CAR.PAG is simply 'CAR'.

Argument Description

pagename This is the name of the page for closure, based on its
filename without the file extension, e.g. the pagename for
CAR.PAG is simply 'CAR'. The pagename for closure
must be currently open.

Note: The 'close' operation will cause the page to be unloaded, including all objects,
ActiveX controls and scripts. Care must be taken not to attempt to access them
after the close instruction.

Note: Where the script containing the 'close' instruction is on the page to be closed,
this should be the last instruction in the script as it will cause the script to be
unloaded.

General Commands SECTION 6 Functions and Methods

55

6-3 General Commands

6-3-1 Exponential
Description
Mathematical function to calculate a value raised to a power.
Syntax

result = Exp (value, exponent)

Remarks

Typical Example
MSBMask = Exp (2, 15)

In this example, 'MSBMask' is assigned the value 215, i.e. 32,768.

6-3-2 PlayOLE
Description
Initiate an OLE verb or 'method' on an OLE 2 object. The verb number is
object dependent so refer to the object's documentation. This function is now
largely obsolete as most objects are nowadays ActiveX objects.
Syntax

returnstate = PlayOLE("objectname",OLEVerbNumber)

Remarks

Argument Type Description

result integer Point name to receive returned result of value
raised to the power of exponent.

value integer Number to raise.

exponent integer Power to raise value by.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

objectname string The identifier of the OLE object to be played.

OLEVerbNumber integer The verb number has a specific meaning to the
OLE application. Typical values are:
0: specifies the action that occurs when an
end-user double clicks the object in its
container. The object determines this action
(often 'edit' or 'play').
-1: instructs the object to show itself for editing
or viewing. Usually an alias for some other
object-defined verb.
-2: instructs an object to open itself for editing
in a window separate from that of its container.
-3: causes an object to remove its user
interface from the view. Applies only to objects
that are activated in-place.
Positive numbers designate object specific
verbs.

General Commands SECTION 6 Functions and Methods

56

Typical Example
PlayOLE("ole_1",0)

The object 'ole_1' is played using its primary verb.

6-3-3 DisplayPicture
Description
Reload a picture for a Picture object.
Syntax

returnstate = DisplayPicture("objectname", filename)

Remarks

Typical Example
DisplayPicture("Bitmap_1","C:\Application\Floorplan1.
bmp")

The object "Bitmap_1" will load and display the Floorplan1 bitmap.
DisplayPicture("Bitmap_2", txtFileName)

The object "Bitmap_2" will load and display the file name stored in txtFileName
text point.

6-3-4 PlaySound
Description
Plays a Windows .WAV sound file using the standard Windows sound channel
and Sound Card driver.
Syntax

returnstate = PlaySound("soundfile")

Remarks

Typical Example
PlaySound("c:\noise.wav")
The soundfile "c:\noise.wav" is played.

6-3-5 Rand
Description
Returns a random integer, between 0 and the specified limit.
Syntax

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

objectname string The identifier of the bitmap object with a to be
loaded and displayed

filename string The filename of the bitmap to be displayed.
This can be a constant (inside quotes) or a text
point.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

soundfile string Path of sound file to be played.

General Commands SECTION 6 Functions and Methods

57

pointname = Rand(upperlimit)

Remarks

Typical Example
randomnumber = Rand(upperlimit)

A random integer in the range 0 to upperlimit is returned and contained in the
point 'randomnumber'. Maximum upperlimit is 32767.

6-3-6 RunApplication
Description
Requests the operating system runs a new program. It will run in a separate
process and RunApplication does not wait for the application to be launched.
The specified filename must be executable i.e. have an extension of .EXE,
.COM or .BAT.
Syntax

returnstate = RunApplication("executable")

Remarks

Typical Example
RunApplication("c:\myprog.exe")

The executable file c:\myprog.exe is run.

6-3-7 RunHelp
Description
Invokes the Windows Help engine and loads a help file, showing a specific
topic number.
Syntax

returnstate = RunHelp("helpfile",helpindex)

Remarks

Argument Type Description

upperlimit integer The maximum negative or positive integer
value that the Rand function can generate.

pointname Integer
point

Point that contains the integer returned from
the Rand function.

Note: If 'upperlimit' is negative then the range is 0 to the negative number.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

executable string Pathname of executable file.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

helpfile string Pathname of helpfile to be run.

helpindex integer Index into a help topic as defined by the help
file being run.

General Commands SECTION 6 Functions and Methods

58

Typical Example
RunHelp("c:\myhelp.hlp",0)

The helpfile c:\myhelp.hlp is run, and topic 0 shown.

6-3-8 SetLanguage
Description
Change the language of text on display. This will reload the system language
file from the program folder (i.e. with a .LNG extension), and the user defined
text from the application folder (i.e. with a .USL extension). This function is the
programmatic equivalent of the user right clicking and changing the
"Language Settings…" option.
Syntax

SetLanguage("language name")

Remarks

Typical Example
SetLanguage("Español")

In this example, the Spanish language files will be loaded.
SetLanguage("Default")

In this example, the language will revert to the default specified by the
application designer.

6-3-9 SetNYLED
Description
Sets the status LEDs on the NY IPC (applies to NYB and NYP only. NY5 sta-
tus LEDs are dedicated to the embedded controller status)
Syntax

returnstate = SetNYLED ID, Action

Remarks

Argument Type Description

language name string Name of language to set to. Must be identical
to filename of related file with ".lng" file
extension. Standard options are English,
Czech, Danish, Deutsch, Español, Finnish,
French, Italiano, Nederlands (België),
Norwegian, Português, Slovenija and Swedish.
In addition "Default" will load the designers
default language.

Argument Type Description

returnstate Boolean True if LED set sucessfully, otherwise false, for
example run on NY5 device or regular PC.

ID Integer Which LED to perform action on. 0 = The Run Mode
LED, 1 = The Error LED

General Commands SECTION 6 Functions and Methods

59

Typical Example
SetNYLED 0, 1

In this example, the Run mode LED is turned on.
SetNYLED 1, 2

In this example, the Error LED is continuously blinked quickly.

6-3-10 GetPerformanceInfo
Description
Read the value of a performance and diagnostics Property as shown by the
Performance Monitor and Diagnostics dialog.
Syntax

returnvalue = GetPerformanceInfo(PLC, Point, "Property
Name")

Remarks

Typical Example
GetPerformanceInfo("", "", "Performance Index")

In this example, the Summary Performance Index will be read..
GetPerformanceInfo("", "", "Processing Time (ms)")

In this example, the CPU Time processing time will be read.
GetPerformanceInfo("MyPLC", "", "Actual CPS")

In this example, the actual characters per second for 'MyPLC' will be returned.
GetPerformanceInfo("", "MyPoint", "Read Callbacks")

In this example, the read callbacks for 'MyPoint' point will be returned.

Action Integer 0 = Turns the LED off
1 = Turns the LED on
2 = Continously blinks the LED (250ms on / 250ms off)
3 = Continously blinks the LED (500ms on / 500ms off)
4 = Continously blinks the LED (1000ms on / 1000ms
off)
5 = Single pulse of the LED (500ms on pulse)

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

PLC string If specified, is the name of the PLC to get the
property of. If the property is not a PLC
property then specify empty string "".

Point string If specified, is the name of the Point to get the
property of. If the property is not a Point
property then specify empty string "".

Property Name string Name of Property to read. Must be identical to
the displayed property name. If both PLC and
Point are empty strings then the 'Summary'
property is returned.

Communications Commands SECTION 6 Functions and Methods

60

6-3-11 ShutDown
Description
Closes the CX-Supervisor application.
Syntax

returnstate = ShutDown()

Remarks

Typical Example
ShutDown()

CX-Supervisor runtime operation is terminated.

6-4 Communications Commands

6-4-1 CloseComponent
Syntax

Returnstate = CloseComponent(ComponentName, PLCName)

Remarks

Typical Examples
CloseComponent("PLC Data Monitor", "MyPLC")

In this example, the PLC Data Monitor component monitoring the PLC
'MyPLC' is closed.

Component = "Performance Monitor"
PLC = "PLC06"
OK = CloseComponent(Component, PLC)

In this example, the Performance Monitor component monitoring the PLC
'PLC06' is closed. 'OK' is used to determine if the action was successful.

6-4-2 EnableOLE
Syntax

returnstate = EnableOLE(pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

ComponentName text A Text point or text constant containing the
name of the component to close.

PLCName text Text point or text constant containing the name
of the PLC that the component to close is
attached to.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Communications Commands SECTION 6 Functions and Methods

61

Typical Examples
EnableOLE(result)

OLE functions are enabled based on the value of point 'result'. If result is
'TRUE', then OLE is enabled. If result is 'FALSE', then OLE is disabled.

EnableOLE(TRUE)

OLE functions can also be enabled directly without using a point to hold the
desired status.

6-4-3 EnablePLC
Syntax

returnstate = EnablePLC(pointname)

Remarks

Typical Examples
EnablePLC(result)

PLC functions are enabled based on the value of point 'result'. If result is
'TRUE', then PLC functions are enabled. If result is 'FALSE', then they are
disabled.

EnablePLC(TRUE)

PLC functions can also be enabled directly without using a point to hold the
desired status.

6-4-4 LaunchTroubleshooter
Description
Launches the SYSMAC Gateway Event Log tool to troubleshoot device errors
(if installed).
Syntax

returnstate = LaunchTroubleshooter()

Remarks

Typical Examples
LaunchTroubleshooter()

The SYSMAC Gateway Event Log tool is launched.

6-4-5 OpenComponent
Syntax

Pointname bool
point

A Boolean point that holds the required enable/
disable state.

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Pointname bool
point

A Boolean point that holds the required enable/
disable state.

Argument Type Description

returnstate Boolean True when sucessfull, otherwise False, for
example when SYSMAC Gateway has not
been installed.

Point Commands SECTION 6 Functions and Methods

62

Returnstate = OpenComponent(ComponentName, PLCName)

Remarks

Typical Examples
OpenComponent("PLC Data Monitor", "MyPLC")

In this example, the PLC Data Monitor component monitoring the PLC
'MyPLC' is opened.

Component = "Performance Monitor"
PLC = "PLC06"
OK = OpenComponent(Component, PLC)

In this example, the Performance Monitor component monitoring the PLC
'PLC06' is opened. 'OK' is used to determine if the action was successful.

6-5 Point Commands

6-5-1 CancelForce
Syntax

returnstate = CancelForce(pointname)

Remarks

Typical Example
CancelForce(point1)

The forcing of values on the point 'point1' is cancelled.
References
Refer to PLC operation manuals for a detailed description of Force Set, and
Force Reset.

6-5-2 CopyArray
Syntax

CopyArray (SourceArray, DestArray)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

ComponentName text A Text point or text constant containing the
name of the component to open.

PLCName text Text point or text constant containing the name
of the PLC that the component to open is
attached to.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point Name of point. If the point is an array point
then all elements within the array have the
CancelForce command applied.

Argument Type Description

SourceArray Name of point array to copy from.

Point Commands SECTION 6 Functions and Methods

63

Typical Example
InitArray (DestArray, 0)

First initialise 'DestArray'.
SourceArray [0] = 1
SourceArray [1] = 2
SourceArray [2] = 3

Then, initialise 'SourceArray' to {1, 2, 3}.
CopyArray (SourceArray, DestArray)

Finally, copy the content of the source array 'SourceArray' to the destination
array 'DestArray'.
The two arrays do not have to be the same size as each other, for example if
'DestArray' contains 20 elements, only elements [0], [1] and [2] are set to 1, 2
and 3 respectively, the remaining elements are unchanged i.e. O's. If
'DestArray' is smaller than 'SourceArray' i.e. it contains two elements then only
elements [0] and [1] are set to 1 and 2 respectively.

6-5-3 DisableGroup
Syntax

returnstate = DisableGroup(groupname)

Remarks

Typical Example
DisableGroup("<Default>")

All points belonging to the <Default> group is disabled thus preventing values
from being read\written.

6-5-4 DisablePoint
Syntax

returnstate = DisablePoint(pointname)

Remarks

Typical Example

DisablePoint(point1)

DestArray Name of point array to copy to.

Argument Type Description

Note: 'CopyArray' accepts arrays of different type i.e. Boolean arrays can be copied
into Real arrays, the only restriction is that Text arrays cannot be copied into
numeric arrays and vice- versa.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

groupname text Name of the group containing the points to
disable.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Pointname point Name of point to be disabled.

Point Commands SECTION 6 Functions and Methods

64

The point 'point1' is disabled thus preventing values to be read/written.

6-5-5 EditPoint
Syntax

EditPoint(BoolPoint, Caption, OffText, OnText)

or
EditPoint(AnalogPoint, Caption, MinValue, MaxValue,
Keyboard)

or
EditPoint(TextPoint, EchoOff, Keyboard)

Remarks

Typical Example
EditPoint(bFlag, "Select ON or OFF", "ON", "OFF")

A dialog is displayed to edit the Boolean point 'bFlag', to "ON" or "OFF" with a
caption "Select ON or OFF".

EditPoint(nValue, "Enter a new value", 0.000000,
9999.000000, FALSE)

A dialog is displayed to edit the analogue point 'nValue', between 0 and 9999
with a caption "Enter a new value" without using the onscreen keyboard.

EditPoint(txtMessage, "Set Text to", FALSE ,FALSE)

A dialog is displayed to edit the Text point 'txtMessage', with a caption "Set
Text to", echoing the input and not displaying the onscreen keyboard.

6-5-6 EnableGroup
Syntax

returnstate = EnableGroup(groupname)

Remarks

Note: This is useful for optimisation of communications.

Argument Type Description

BoolPoint point Name of Boolean point to be edited

Caption Text Text Caption for Edit dialog

OffText Text Text description for Boolean state 0

OnText Text Text description for Boolean state 1

AnalogPoint point Name of Integer or Real point to be edited

MinValue Int/Real Minimum value to be entered

MaxValue Int/Real Maximum value to be entered

Keyboard Bool Flag set to TRUE to display the onscreen
keyboard

TextPoint point Name of Text point to be edited

EchoOff Bool Flag set to TRUE if input is not to be echoed for
security

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Point Commands SECTION 6 Functions and Methods

65

Typical Example
EnableGroup("<Default>")

All points belonging to the '<Default>' group is enabled thus allowing values to
be read\written.

6-5-7 EnablePoint
Syntax

returnstate = EnablePoint(pointname)

Remarks

Typical Example
EnablePoint(point1)

The point 'point1' is enabled thus allowing values to be read/written.

6-5-8 Force
Syntax

returnstate = Force(pointname)

Remarks

Typical Example
Force(point1)
The point 'point1' is locked in its current state. i.e. if it is currently set to 1 it
cannot be changed until the forced state is removed via the CancelForce
command.

6-5-9 ForceReset
Syntax

returnstate = ForceReset(pointname)

Remarks

groupname text Name of the group containing the points to
enable.

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point Name of point to be enabled.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point Name of point to have force state applied. If
the point is an array point then all elements
within the array have the Force command
applied.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Point Commands SECTION 6 Functions and Methods

66

Typical Example
ForceReset(point1)

The Boolean point 'point1' has its value set to 'FALSE'.
References
Refer to PLC operation manuals for a detailed description of ForceSet, and
ForceReset.

6-5-10 ForceSet
Syntax
returnstate = ForceSet(pointname)
Remarks

Typical Example
ForceSet(point1)

The Boolean point 'point1' has its value set to 'TRUE'.
References
Refer to PLC operation manuals for a detailed description of Force Set, and
Force Reset.

6-5-11 GetBit
Syntax

returnpoint = GetBit(pointname,bit)

Remarks

Typical Example
pointname = 256;
returnpoint = GetBit(pointname,8)

The point 'returnpoint' contains 'TRUE'.

6-5-12 InitialiseArray
Syntax

pointname point Name of point. If the point is an array point
then all elements within the array have the
ForceReset command applied.

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point Name of point. If the point is an array point
then all elements within the array have the
ForceReset command applied.

Argument Type Description

pointname Integer /
real

This is the name of the point to get the bit value
from. Indirection or point value may be used.

bit integer This specifies which bit to get the value of.

returnpoint bool This contains the return value 'TRUE' or
'FALSE'.

Point Commands SECTION 6 Functions and Methods

67

InitArray (arrayname, value)
Remarks

Typical Example
InitArray (MyArray, 0)

In this example, all elements of the array 'MyArray' are set to 0.

6-5-13 InputPoint
Syntax

returnstate = InputPoint(pointname, returnflag)

Remarks

Typical Examples
InputPoint(point)
returnflag = FALSE
InputPoint(point, returnflag)

A request is made that the current value of point 'point' should be read. In the
second example, returnflag is set to 'TRUE' when the value is returned from
the PLC.

6-5-14 OutputPoint
Syntax

returnstate = OutputPoint(pointname)

Remarks

Typical Examples
OutputPoint(result)

The point 'result' is updated with its current value.

Argument Type Description

arrayname Name of point array.

value Value to set all elements of the array to.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point The point name whose data is to be read.

returnflag point Optional Boolean point which is set to 'TRUE'
when value is returned from the PLC.

Note: The value is not returned immediately - it is not possible to use the returned
value in the same script as the InputPoint command. Instead, the value should
be accessed from within an "On Condition" script which has an expression of
'returnflag = TRUE'.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point The point to be updated.

Note: The value of a point connected to a PLC is not be set if the point is currently in
a "forced" state.

PLC Commands SECTION 6 Functions and Methods

68

6-5-15 PointExists
Syntax

returnpoint = PointExists(pointname)

Remarks

Typical Example
PointName="Testpoint"
Exists=PointExists(PointName)

The Boolean point 'Exists' is set to 'TRUE' if a point called 'TestPoint' exists.

6-5-16 SetBit
Syntax

returnstate = SetBit(pointname,bit,value)

Remarks

Typical Example
testpoint = 0;
SetBit(testpoint,4,TRUE)

The point 'testpoint' contains the value 16.

6-6 PLC Commands

6-6-1 ClosePLC
Syntax

returnstate = ClosePLC("plcname")

Remarks

Argument Type Description

pointname string pointnamestringThis text contains the point
name.

returnpoint point Boolean point that contains the return value.

Note: "PointName" is a text point which can be set to any string value.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname integer/
real

This is the name of the point to set the bit for.
Indirection or point arrays may be used.

bit point This specifies the bit to set.

value bool This specifies the value to set the bit to.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

PLC Commands SECTION 6 Functions and Methods

69

Typical Example
ClosePLC("controlPLC")

The PLC called controlPLC is closed. No further communications with the
PLC will take place until it is reopened.

6-6-2 DownloadPLCProgram
Syntax

returnstate = DownloadPLCProgram(plcname, filename,
processed)

Remarks

Typical Example
DownloadPLCProgram("controlPLC", "Prog01.bin", done)

The program stored in the file 'Prog01.bin' in the current directory is
downloaded to the PLC 'controlPLC'. Before continuing, the script waits up to
five seconds for the action to succeed.

6-6-3 GetPLCMode
Syntax

mode = GetPLCMode("plcname")

Remarks

plcname string Name of PLC to be opened. If the PLC is being
accessed using a communications component,
e.g. the Omron CX-Communications Control
this parameter should be the control name and
PLC name separated by a dot e.g.
"OMRONCXCommunicationsControl.controlPL
C".

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

plcname string Name of PLC to download the program to.

filename string Name of the file on disk to download to the
PLC. If a drive and path are not specified, the
current directory is assumed, which may not be
the same as the application directory. If a
filename is specified as "" the user is prompted
at runtime for a filename.

processed bool processed is set to 'TRUE' when the operation
is actually completed.

Note: The operation may not be complete immediately after the statement has been
executed. The processed flag 'done' is set at a later time when the operation
has been completed. Therefore, if using statements that require the upload to
be completed create an On Condition script containing the code to be
executed after the upload, with the processed flag as the expression (e.g.
'done').

Note: This command can only be used when the PLC is in 'STOP' mode. Refer to
chapter 6, GetPLCMode or chapter 6, SetPLCMode for further information.

PLC Commands SECTION 6 Functions and Methods

70

Typical Example
currentmode = GetPLCMode("controlPLC")

In this example, the current mode of the PLC 'controlPLC' is stored in the point
'currentmode'.

6-6-4 OpenPLC
Syntax

Returnstate = OpenPLC("plcname", processed)

Remarks

Typical Example
OpenPLC("controlPLC", doneopen)

The PLC called controlPLC is opened for communication.

6-6-5 PLCCommsFailed
Syntax

returnstate = PLCCommsFailed("plcname")

Remarks

Typical Example
IsFailing = PLCCommsFailed ("controlPLC")

The point IsFailing is set to true if the PLC called controlPLC is currently not
communicating. Otherwise it is set to false.

Argument Type Description

mode string A Text point containing the current PLC mode.
Possible modes are 'STOP', 'DEBUG', 'RUN',
'MONITOR' and 'UNKNOWN'.

plcname string Name of PLC

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC to be opened. If the PLC is being
accessed using a communications component,
e.g. the Omron CX-Communications Control
this parameter should be the control name and
PLC name separated by a dot e.g.
"OMRONCXCommunicationsControl.controlPL
C".

processed bool Flag set to TRUE when set operation has
actually been completed.

Note: The PLC may not be opened immediately after the statement has been
executed. The processed flag will be set at a later time when the operation
has been completed. Therefore, if using statements which require the
operation to be completed create an On Condition script containing the code to
be executed after the PLC is opened with the 'processed' flag as the
expression (this is generally more efficient).

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC to be checked.

PLC Commands SECTION 6 Functions and Methods

71

Note:This function returns to TRUE from the time when a communications
timeout error with the named PLC occurs, until successful communication with
the PLC takes place.

6-6-6 PLCMonitor
Syntax

returnstate = PLCMonitor("plcname")

Remarks

Typical Example
PLCMonitor("controlPLC")

The monitor dialog for the PLC called controlPLC is invoked. This dialog can
be used to check PLC status, change mode, etc.

6-6-7 SetPLCMode
Syntax

returnstate = SetPLCMode("plcname", mode, processed)

Remarks

Typical Examples
SetPLCMode("controlPLC", "STOP", done)

In this example, the mode of the PLC called 'controlPLC' is changed to
"STOP".

6-6-8 SetPLCPhoneNumber
Syntax
Returnstate = SetPLCPhoneNumber("plcname", numbertext)

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC to be monitored.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC

mode string A value for the new PLC mode. Valid modes
are 'STOP', 'DEBUG', 'RUN' and 'MONITOR'.

processed bool processed is set to 'TRUE' when the operation
is actually completed.

Note: The mode may not be changed immediately after the statement has been
executed. The processed flag 'done' is set at a later time when the operation
has been completed. Therefore, if using statements that require the operation
to be completed create an On Condition script containing the code to be
executed after the mode is set, with the processed flag as the expression (e.g.
'done').

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC to change the number of.

Temperature Controller Commands SECTION 6 Functions and Methods

72

Typical Example
SetPLCPhoneNumber("controlPLC", "01234 987654")

The phone number for the PLC is changed to the required value.

6-6-9 UploadPLCProgram
Syntax

returnstate = UploadPLCProgram(plcname, filename,
processed)

Remarks

Typical Example
UploadPLCProgram("controlPLC", "Prog01.bin", done)

The program in the PLC 'controlPLC' is uploaded to the file 'Prog01.bin' in the
current directory. Before continuing, the script waits up to five seconds for the
action to succeed.

6-7 Temperature Controller Commands

6-7-1 TCAutoTune
Syntax

returnstate = TCAutoTune(TController,mode)

Remarks

numbertext string New phone number for the PLC.

Argument Type Description

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC to upload the program from.

filename string Name of the file on disk to upload the program
to. If a drive and path are not specified, the file
is created in the current directory, which may
not be the same as the application directory. If
a filename is specified as "" the user is
prompted at runtime for a filename.

processed bool processed is set to 'TRUE' when the operation
is actually completed.

Note: The operation may not be complete immediately after the statement has been
executed. The processed flag 'done' is set at a later time when the operation
has been completed. Therefore, if using statements that require the upload to
be completed create an On Condition script containing the code to be
executed after the upload, with the processed flag as the expression (e.g.
'done').

Note: This command can only be used when the PLC is in 'STOP' mode. Refer to
chapter 6, GetPLCMode or chapter 6, SetPLCMode for further information.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

Temperature Controller Commands SECTION 6 Functions and Methods

73

Typical Example
temp1 = TCAutoTune("e5ak",temp2)

6-7-2 TCBackupMode
Syntax

returnstate = TCBackupMode(TController,mode)

Remarks

Typical Example
temp1 = TCBackupMode("ea5k",temp2)

6-7-3 TCGetStatusParameter
Syntax

returnstate =
TCGetStatusParameter(TController,paramID,value)

Remarks

mode point This is a point depicting the mode of operation
and defines the operation to be carried out
when a TCAutoTune command is issued.
0: Indicates that the auto-tuning operation is to
be stopped.
1: This mode is supported on the E5*K and is
used to set the limit cycle of the manipulated
variable change width to 40%.
2: This is used to start the auto-tuning
operation.

Argument Type Description

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

mode point This is a point depicting the mode of operation
and defines the method used by a temperature
controller for storing internal variables.
0: In this mode variables are stored in RAM and
EPROM.
1: In this mode variables are stored in RAM
only.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

Temperature Controller Commands SECTION 6 Functions and Methods

74

Typical Example
temp1 = TcGetStatusParameter("e5ak",temp2,temp3)

6-7-4 TCRemoteLocal
Syntax

returnstate = TCRemoteLocal(TController,mode)

Remarks

paramID point This is a point depicting the required parameter
range 0 to 22:
 0: ControlMode.
 1: Output.
 2: InputShiftDelay (Bool) E5*F, E5*X, E5*J.
 3: DisplayUnit.
 4: PIDConstantDisplay (Bool) E5*F, E5*X,
E5*J.
 5: OutputType.
 6: CoolingType.
 7: Output2.
 8: Alarm1.
 9: Alarm2.
10: InputType (Integer) E5*F, E5*X, E5*J.
11: OperationMode.
12: BackupMode.
13: AutoTuneMode.
14: OverFlow (Bool) E5*F, E5*X, E5*J.
15: UnderFlow (Bool) E5*F, E5*X, E5*J.
16: SensorMalfunction (Bool) E5*F, E5*X,
E5*J.
17: ADConvertorFailure (Bool) E5*F, E5*X,
E5*J.
18: RAMAbnormality (Bool) E5*F, E5*X, E5*J.
19: RAMMismatch (Bool) E5*F, E5*X, E5*J.
20: StatusWordsOnly (Bool) E5*K only (TRUE
indicates valid words below).
21: Status0 (word) E5*K only.
22: Status1 (word) E5*K only.

value point,
real or
int

The returned status parameter value. Refer to
paramID above for details.

Argument Type Description

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

Temperature Controller Commands SECTION 6 Functions and Methods

75

Typical Example
temp1 = TCRemoteLocal("e5ak",temp2)

6-7-5 TCRequestStatus
Syntax

returnstate = TCRequestStatus(Tcontroller,
returnflag)

Remarks

Typical Example
temp1 = TCRequestStatus("e5ak", temp2)

6-7-6 TCRspLsp
Syntax

returnstate = TCRspLsp(Tcontroller,mode)

Remarks

Typical Example
temp1 = TCRspLsp("e5ak",temp2)

mode point This is a point depicting the mode of operation
and defines the operational mode of a
temperature controller.
0: This specifies the temperature controller is in
remote mode.
1: This specifies that the temperature controller
is in local mode.

Argument Type Description

Note: This command was previously called TCOperationalMode.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

returnflag point This is a point depicting that the status has
been returned and is available for the
command TCGetStatusParameter.

Note: The status information is NOT returned immediately - it is not possible to
access the status information in the same script as the TCRequestStatus
command. Instead, the status information should be accessed from within an
"On Condition" script which has an expression of "returnflag == TRUE".

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

mode point This is a point depicting the mode of operation
and defines the setpoint mode used by the
temperature controller.
0: This specifies remote setpoint mode.
1: This specifies local setpoint mode.

Temperature Controller Commands SECTION 6 Functions and Methods

76

6-7-7 TCRunStop
Syntax

returnstate = TCRunStop(TController,mode)

Typical Example
temp1 = TCRunStop("e5ak",temp2)

6-7-8 TCSaveData
Syntax

returnstate = TCSaveData(TController)

Remarks

Typical Example
temp1 = TCSaveData("e5ak",temp2)

6-7-9 TCSettingLevel1
Syntax

returnstate = TCSettingLevel1(TController)

Remarks

Typical Example
temp1 = TCSettingLevel1("e5ak")

6-7-10 TCReset
Syntax

returnstate = TCReset(TController)

Remarks

Note: This command was previously called TCSetpoint.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

mode point This is a point depicting the mode of operation
and defines either auto-output mode shift or
manual output mode shift.
0: This specifies manual output mode shift.
1: This specifies auto-output mode shift.

Note: This command was previously called TCModeShift.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

Alarm Commands SECTION 6 Functions and Methods

77

Typical Example
temp1 = TCReset("e5ak")

6-8 Alarm Commands

6-8-1 AcknowledgeAlarm
Syntax

returnstate = AcknowledgeAlarm("alarmname")

Remarks

Typical Example
AcknowledgeAlarm("temphigh")

The alarm 'temphigh' is acknowledged.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-2 AcknowledgeAllAlarms
Syntax

returnstate = AcknowledgeAllAlarms()

Remarks

Typical Example
AcknowledgeAllAlarms()

All alarms are acknowledged.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-3 AcknowledgeLatestAlarm
Syntax

returnstate = AcknowledgeLatestAlarm()

Remarks

Typical Example
AcknowledgeLatestAlarm()

The most current alarm of the highest priority is acknowledged.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

TController string This is a string representing the name of the
temperature controller.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

alarmname string This is the identifier of the alarm.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Alarm Commands SECTION 6 Functions and Methods

78

References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-4 ClearAlarmHistory
Syntax

returnstate = ClearAlarmHistory()

Remarks

Typical Example
ClearAlarmHistory()

The alarm history window is cleared and the log is cleared.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-5 CloseAlarmHistory
Syntax

returnstate = CloseAlarmHistory()

Remarks

Typical Example
CloseAlarmHistory()

The alarm history window is closed.
References
Refer to the CX-Supervisor User Manual for details of alarms

6-8-6 CloseAlarmStatus
Syntax

returnstate = CloseAlarmStatus()
Remarks

Typical Example
CloseAlarmStatus()

The current alarm status window is closed.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-7 DisplayAlarmHistory
Syntax

returnstate = DisplayAlarmHistory()

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Alarm Commands SECTION 6 Functions and Methods

79

Typical Example
DisplayAlarmHistory()

The alarm history window is displayed.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-8 DisplayAlarmStatus
Syntax

returnstate = DisplayAlarmStatus()

Remarks

Typical Example
DisplayAlarmStatus()

The current alarm status is displayed.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-9 EnableAlarms
Syntax

EnableAlarms (flag, "message")

Remarks

Typical Example
EnableAlarms (TRUE, "Alarm logging enabled")

References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-10 IsAlarmAcknowledged
Syntax

pointname = IsAlarmAcknowledged("alarmname")

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

Argument Type Description

flag If set 'TRUE' then alarm logging is enabled. If
set 'FALSE' logging is disabled.

message Text message which is recorded in the alarm
log to indicate change of status.

Argument Type Description

pointname bool
point

The Boolean point name to be assigned a
value based on the test of an acknowledged
alarm.

alarmname string The identifier of the alarm.

File Commands SECTION 6 Functions and Methods

80

Typical Example
acknowledged = IsAlarmAcknowledged("temptoohigh")

The point 'acknowledged' is assigned Boolean state ''TRUE'' if the
'temptoohigh' alarm is currently acknowledged. The point is assigned Boolean
state 'FALSE' if the alarm is not currently acknowledged.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-11 IsAlarmActive
Syntax

pointname = IsAlarmActive("alarmname")

Remarks

Typical Example
active = IsAlarmActive("temptoohigh")

The point 'active' is assigned Boolean state ''TRUE'' if the 'temptoohigh' alarm
is currently active. The point is assigned Boolean state 'FALSE' if the alarm is
not currently active.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-9 File Commands

6-9-1 CloseFile
Syntax

returnstate = CloseFile(pointname)

Remarks

Typical Examples
CloseFile(status)

The currently open file is closed. Blank spaces at the end of each line are
stripped from the file if the Boolean point 'status' is set to 'TRUE'.

CloseFile(FALSE)

In this example, the currently open file is closed and any blank spaces are not
stripped from the file.

Argument Type Description

pointname bool
point

The Boolean point name to be assigned a
value based on the test of an active alarm.

alarmname string The identifier of the alarm.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname bool A Boolean point that holds the required status
of whether blank spaces should be stripped
from the file when it is closed.

Note: If blank spaces are stripped from the file, then it greatly reduces in size but it
takes slightly longer to close. Blank spaces should not be stripped from the file
if it is being used on a network drive by more than one system at a time.

File Commands SECTION 6 Functions and Methods

81

6-9-2 CopyFile
Syntax

returnstate = CopyFile("sourcename", "destname")

Remarks

Typical Example
CopyFile("c:\autoexec.bat", "c:\autoexec.old")

The file "c:\autoexec.bat" is copied to the file "c:\autoexec.old".
CopyFile("c:\logging*.dlv", "a:\backup")

The data log files (ending in dlv) in "C:\logging" are copied to the "\backup"
directory on drive A:

6-9-3 DeleteFile
Syntax
returnstate = DeleteFile("filename")
Remarks

Typical Example
DeleteFile("c:\pagename.pag")

The file "c:\pagename.pag" is deleted.

6-9-4 EditFile
Syntax

returnstate = EditFile("filename")

Remarks

Typical Example
EditFile("C:\report3.txt")
FileExists

Syntax
returnpoint = FileExists (filename)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

sourcename string Pathname of file to be copied. May include a
"*" wildcard character.

destname string Pathname of destination of copy. If path name
does not exist it is created.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be deleted.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be edited.

File Commands SECTION 6 Functions and Methods

82

Typical Example
FileName = "TEST.TXT"

Exists = FileExists(FileName)
The Boolean point 'Exists' is set to 'TRUE' if a file called 'C:\TEST.TXT' exists.

6-9-5 MoveFile
Syntax

returnstate = MoveFile("sourcename", "destname")

Remarks

Typical Example
MoveFile("c:\autoexec.bat", "c:\autoexec.old")

The file "c:\autoexec.bat" is moved to the file "c:\autoexec.old".

6-9-6 OpenFile
Syntax

returnstate = OpenFile("filename")

Remarks

Typical Example
OpenFile("c:\filename")

The file "c:\filename.csf" is opened and able to be accessed by the Read() and
Write() script commands. Only one file can be open at a time. A file is created
if it doesn't already exist. Files can be shared (for instance located on a
network drive, and accessed by several running CX-Supervisor applications
simultaneously - this can be used for data exchange).

6-9-7 PrintFile
Syntax

returnstate = PrintFile("filename")

Remarks

Argument Type Description

filename string This text string contains the file name.

returnpoint point Boolean point that contains the return value.

Note: "FileName" is a text point which can be set to any string value.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

sourcename string Pathname of file to be moved.

destname string Pathname of destination of move.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be opened.

Note: An extension ".csf" will always be added to the filename so it must not be
specifed as part of the argument.

File Commands SECTION 6 Functions and Methods

83

Typical Example
PrintFile("c:\autoexec.bat")

The file "c:\autoexec.bat" is sent to the currently configured printer.
Script commands that have textual arguments can take either literal strings
within quotes or text points.

6-9-8 Read
Syntax

returnstate = Read(RecordId, pointname, ...)

Remarks

Typical Examples
Read(1, value)

The point 'value' is loaded with the value read from the currently open file
using the value of 1 as an index into the file.

ReadOK = Read(indexno, value1, value2, value3)

The points 'value1', 'value2', 'value' are loaded using the value of indexno as
an index into the file. Pass or fail status is stored in 'ReadOK'.

6-9-9 ReadMessage
Syntax

returnstate = ReadMessage ("filename", offset,
textpoint, noofchars)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be printed.

Note: CX-Supervisor uses the OLE registration information (file extension
associations) to decide how to print a file. It invokes the parent application
associated with a particular file extension, instructing the application to start
minimised and passing the "print" command. For example, if the file extension
.txt is associated with Notepad, then Notepad is invoked to print the file.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

RecordId integer An index into the file.

Pointname point Name(s) of point(s) to be updated with the data
read from the open file.

Note: It is advisable to use a RecordId less than 1024 whenever possible, in order to
optimise file access time (records 0 to 1023 are cached).

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be read.

File Commands SECTION 6 Functions and Methods

84

Typical Example
ReadMessage ("C:\CX-SUPERVISOR\TESTFILE.TXT", 0,
TextPoint, 20)

The first 20 characters are be read from the file "C:\CX-
SUPERVISOR\TESTFILE.TXT" and stored in the point 'TextPoint'.

6-9-10 SelectFile
Syntax

filename = SelectFile (filter, path)

Remarks

Typical Example
TFile = SelectFile()

The 'File Open' dialog will be displayed, showing all files in the current working
directory. The users choice will be stored in tFile.

TFile = SelectFile("Text Files (*.txt)|*.txt||")

The 'File Open' dialog will be displayed, showing just files with a .txt extension
in the current working directory.

TFile = SelectFile("Text Files (*.txt;
.csv)|.txt;*.csv||")

The 'File Open' dialog will be displayed, showing files with either a .txt or .csv
extension in the current working directory.

Offset integer An offset from the beginning of the file (in
characters) indicating where to start reading
from.

Textpoint text
point

The text point which holds the characters read
from the file.

Noofchars integer The number of characters to read from the file.

Argument Type Description

Note: Text points can hold up to 256 characters therefore a maximum of 256
characters can be read from the file.

Argument Type Description

Filename Text string returned. Contains fully qualified
filename including drive and path if OK was
selected from OpenFile comms dialog,
otherwise contains empty string.

Filter string Optional argument. If omitted, will show all
files. This argument must be supplied if path is
specified i.e. set to "". Specifies the filter string
used by the 'Files of type' list. The string
should contain 1 or more filters separated with
a '|' (pipe) character and end with 2 characters
i.e. '||'. Each filter should have some user text
and 1 or more file specs separated with a
semicolon. No spaces should be used, except
within the user text.

Path string Optional argument. Specifies the path to show
initially. If omitted, the dialog shows the current
working directory.

File Commands SECTION 6 Functions and Methods

85

TFile = SelectFile("Text Files (*.txt;
.csv)|.txt;*.csv|Document Files (*.doc)|*.doc||")

In this example, the 'Files of type' filter has 2 choices: one to show text files
(i.e. both .txt and .csv files), and one to show document files (just .doc files).

TFile = SelectFile("", "C:\WINDOWS")

The 'File Open' dialog will be displayed, showing all files in the
"C:\WINDOWS" directory.

6-9-11 Write
Syntax

returnstate = Write(RecordId, pointname, ...)

Remarks

Typical Examples
WroteOK = Write(indexno, $Second)

The point '$Second' is written to the currently open file using the value of
indexno as an index into the file. Pass or fail status is stored in 'WroteOK'.

Write(2, $Second, $Minute, $Hour)

The points '$Second', '$Minute', '$Hour' are written to the currently open file
using the value 2 as an index into the file.
Note:It is advisable to use a RecordId less than 1024 whenever possible, in
order to optimise file access time (records 0 to 1023 are cached).

6-9-12 WriteMessage
Syntax

returnstate = WriteMessage("filename", offset, "text",
linefeed)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

RecordId integer An index into the file.

Pointname point Name(s) of point(s) containing data to write to
the open file.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

filename string Pathname of file to be written.

offset integer An offset from the beginning of the file (in
characters) indicating where to start writing. If
the offset is -1 then the message is appended
to the end of the file.

text string The text to be written into the file.

linefeed bool A flag to indicate a carriage return and line feed
should be appended.

Recipe Commands SECTION 6 Functions and Methods

86

Typical Example
WriteMessage("C:\CX-SUPERVISOR\TESTFILE.TXT", 0,
"Hello World", TRUE)

The text 'Hello World' is written at the start of the 'C:\CX-
SUPERVISOR\TESTFILE.TXT' file and a carriage return and line feed is
appended which moves and subsequent text to the start of the next line.

6-10 Recipe Commands

6-10-1 DisplayRecipes
Syntax

returnstate = DisplayRecipes()

Remarks

Typical Example
DisplayRecipes()

The current recipes is displayed.
References
Refer to the CX-Supervisor User Manual for details of recipes.

6-10-2 DownloadRecipe
Syntax

returnstate = DownloadRecipe("recipename")

Remarks

Typical Example
DownloadRecipe("recipe1")

The recipe 'recipe1' is downloaded.
References
Refer to the CX-Supervisor User Manual for details of recipes.

6-10-3 UploadRecipe
Syntax

returnstate = UploadRecipe("recipename", processed)

Remarks

Note: When the text is written into the file it overwrites any existing text that may exist
at this location.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

recipename string The name of the recipe to be downloaded.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Report Commands SECTION 6 Functions and Methods

87

Typical Example
UploadRecipe("recipe1",done)

The recipe 'recipe1' is uploaded, and point 'done' is set True when the upload
is complete.
References
Refer to the CX-Supervisor User Manual for details of recipes.

6-11 Report Commands

6-11-1 GenerateReport
Syntax

returnstate =
GenerateReport(ReportTemplateFile,ReportOutputFile)

Remarks

Typical Example
GenerateReport("report3.txt","output.txt")

The ReportTemplateFile report3.txt contains a predefined set of point names
and text laid out exactly as the report reader likes to view them. The point
names contained within enclosing characters are the CX-Supervisor names
for the data that is required in the report.
The enclosing characters can be changed in the Project/Runtime Setting/
Report setting dialog box, but once set must be fixed for all reports generated
by the project.
The template file can be written using any ASCII text editor, for instance a Text
file (.TXT), a Rich Text file (.RTF) or a Hypertext file (.HTML).
The report template is processed, dynamically replacing the point names with
current values, and saved as output.txt.

6-11-2 PrintReport
Syntax

returnstate = Printreport(ReportTemplateFile)

Remarks

recipename string The name of the recipe to be uploaded.

processed bool Flag set to true when operation has been
completed.

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

ReportTemplateFile string Pathname of the report template file.

ReportOutputFile string Pathname of the report output file.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

ReportTemplateFile string Pathname of the report template file.

Text Commands SECTION 6 Functions and Methods

88

Typical Example
PrintReport("report3.txt")

The report template is processed, dynamically replacing the point names with
current values, and printed to the default Windows printer.

6-11-3 ViewReport
Syntax

returnstate = ViewReport(ReportTemplateFile)

Remarks

Typical Example
ViewReport("report3.txt")

6-12 Text Commands

6-12-1 BCD
Syntax

result = BCD (value)

Remarks

Typical Example
BCDStr = BCD(39)

In this example, 'BCDstr' contains '00111001'.

6-12-2 Bin
Syntax

result = Bin (value)

Remarks

Typical Example
BStr = Bin (20)

In this example, 'Bstr' contains '10100'.

ReportOutputFile string Pathname of the report output file.

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

ReportTemplateFile string Pathname of the report template file.

Argument Type Description

Value Number to convert to Binary Coded Decimal
(BCD).

result String containing BCD representation of value.

Argument Type Description

Value Number to be converted to a binary number.

result String containing binary representation of
value.

Text Commands SECTION 6 Functions and Methods

89

6-12-3 Chr
Syntax

result = Chr (value)

Remarks

Typical Example
Char = Chr(65)

In this example, 'Char' contains 'A'.

6-12-4 FormatText
Syntax

textpoint = FormatText ("formattext", expression, ...)

Remarks

Typical Examples
TextPoint = FormatText ("Boiler temperature is %ld
degrees.", BoilerTemp)

The value of the 'BoilerTemp' point is inserted into the specified text at the
position marked by the formatting characters (%ld) and then stored in the point
'TextPoint'.
If the value of 'BoilerTemp' was 57 then the resultant text that is stored in
'TextPoint' is as follows:

"Boiler temperature is 57 degrees."
TextPoint = FormatText ("Boiler %ld temperature is %ld
degrees.", BoilerNo, BoilerTemp)

The value of 'BoilerNo' point is inserted at the first '%ld' marker and the value
of the 'BoilerTemp' point is inserted at the second '%ld' marker and the
resulting string is stored in the point 'TextPoint'.
If the value of 'BoilerNo' was 7 and the value of 'BoilerTemp' was 43 then the
resultant text stored in the 'TextPoint' is as follows:

"Boiler 7 temperature is 43 degrees."

Argument Type Description

Value Extended ASCII value to convert to a
character.

result String containing single character
representation of value.

Argument Type Description

textpoint text
point

A text point which holds the formatted text.

formattext string The text (with appropriate formatting
characters) that the result expression is
inserted into.

expression Integer /
real

The value(s) or expression(s) that is inserted
into formattext.

Text Commands SECTION 6 Functions and Methods

90

With the text left aligned, and with a width field (for instance '%-6ld' to insert a
value left aligned with a field 6 characters wide).
References
More complex expressions (for instance controlling justification, decimal
places, number base, etc.) are also possible. Refer to any C language
reference book for full details of the format used by the 'sprintf' function.

6-12-5 GetTextLength
Syntax

value = GetTextLength (textpoint)

Remarks

Typical Example
textpoint = "Hello World"
count = GetTextLength (textpoint)

The number of characters in 'textpoint' is counted and the point 'count' is set to
the value 11.

6-12-6 Hex
Syntax

result = Hex (value)

Remarks

Typical Example
HStr = Hex (44)

In this example, 'Hstr' contains '2C'.

Note: The formatting characters are standard 'C' formatting characters (as used by
the C-language sprintf function). Some commonly used types are:

• %ld. Insert integer value;
• %f. Insert decimal value. Prefix with decimal point and number to control

position (for instance '%.2f' for 2 decimal places);
• %s. Insert string;
• %IX. Insert hexadecimal value (upper case HEX characters, for instance

'FFFF');
• %lx. Insert hexadecimal value (lower case HEX characters, for instance

'ffff');
• %c. Insert character (can be used to convert value to character, for

instance to insert control character).

Argument Type Description

textpoint text
point

This is the point which has its text length
counted.

returnpoint Integer /
real

This is the point that holds the return value.

Argument Type Description

Value Number to be converted to a Hex number.

Result String containing Hex representation of value.

Text Commands SECTION 6 Functions and Methods

91

6-12-7 Left
Syntax

lefttext = Left(textpoint,noofchars)

Remarks

Typical Example
textpoint = "abcdefgh"
lefttext = Left(textpoint,3)

The text point 'lefttext' contains the string 'abc'.

6-12-8 Message
Syntax

Message("message")

Remarks

Typical Example
Message("this is a message")

The message 'this is a message' is displayed in a Message Box.

6-12-9 Mid
Syntax

midtext = Mid(textpoint,offset,noofchars)

Remarks

Typical Example
textpoint = "abcdefgh"
midtext = Mid(textpoint,3,2)

The text point 'midtext' contains the string 'de'.

Argument Type Description

textpoint text The text point containing the string that is to be
manipulated.

noofchars integer The number of characters to extract from the
start of the string.

lefttext text Text point containing the specified range of
characters.

Argument Type Description

message string Contains the text string that is displayed in the
message box.

Argument Type Description

textpoint text The text point containing the string that is to be
manipulated.

offset integer The zero based index of the first character in
the string that is to be included in the extract.

noofchars integer The number of characters to extract from the
string.

midtext text Text point containing the specified range of
characters.

Text Commands SECTION 6 Functions and Methods

92

6-12-10 PrintMessage
Syntax
PrintMessage ("message")
Remarks

Typical Example
PrintMessage ("Print this message")

The message 'print this message' is printed to the configured 'Alarm/message
printer', queued if operating in page mode, or printing has been disabled by
the EnablePrinting command.
References
Refer to the CX-Supervisor User Manual for further details to configure the
'Alarm/message printer'.

6-12-11 Right
Syntax

righttext = Right(textpoint,noofchars)

Remarks

Typical Example
textpoint = "abcdefgh"
righttext = Right(textpoint,3)

The text point 'righttext' contains the string 'fgh'.

6-12-12 TextToValue
Syntax

valuepoint = TextToValue(textpoint)

Remarks

Typical Examples
textpoint = "10"
valuepoint = TextToValue(textpoint)

The value 10 is assigned to the point 'valuepoint'.

Argument Type Description

message string Contains the text string that is sent to the
printer.

Argument Type Description

textpoint text The text point containing the string that is to be
manipulated.

noofchars integer The number of characters to extract from the
string.

righttext text Text point containing the specified range of
characters.

Argument Type Description

textpoint text The text point containing the string that is to be
converted into a number.

valuepoint integer A point containing the value returned after
conversion from a string.

Event/Error Commands SECTION 6 Functions and Methods

93

textpoint = "10.34"
realpoint = TextToValue(textpoint)

The real value 10.34 is assigned to the real point 'realpoint'.

6-12-13 ValueToText
Syntax

textpoint = ValueToText(value)

Remarks

Typical Examples
textpoint = ValueToText(10)

The value 10 is put into a string and assigned to the text point 'textpoint'.
value = 10
textpoint = ValueToText(value)

This has the same effect as the previous example.

6-13 Event/Error Commands

6-13-1 ClearErrorLog
Syntax

ClearErrorLog()

Typical Example
ClearErrorLog()

The error list is cleared and the log deleted.

6-13-2 CloseErrorLog
Syntax

returnstate = CloseErrorLog()

Remarks

Typical Example
CloseErrorLog()

The list of all currently logged errors is closed.

6-13-3 DisplayErrorLog
Syntax

returnstate = DisplayErrorLog()

Remarks

Argument Type Description

value integer The number that is to be placed into the
textpoint. A point name is also a valid
parameter.

textpoint text
point

A text point containing the value converted into
a string.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Event/Error Commands SECTION 6 Functions and Methods

94

Typical Example
DisplayErrorLog()

A list of all currently logged errors is displayed in a dialog.

6-13-4 EnableErrorLogging
Syntax

returnstate = EnableErrorLogging(pointname)

Remarks

Typical Example
EnableErrorLogging(flag)

Error Logging is enabled based on the Boolean point 'flag'. If 'flag' is 'TRUE',
then error logging is enabled. If 'flag' is false, then error logging is disabled.

6-13-5 LogError
Syntax

returnstate = LogError("message", priority)

Remarks

Typical Example
LogError("This is an error", 1)

The message 'This is an error' appears as a medium priority error in the error
log.

6-13-6 LogEvent
Syntax

returnstate = LogEvent("message")

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname bool A Boolean point.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

message string Contains the text string that is displayed in the
Error Log.

priority integer Priority assigned to the error.
0 - low
1 - medium
2 - high

Printer Commands SECTION 6 Functions and Methods

95

Typical Example
LogEvent("this is an event")

The message 'this is an event' appears as an event in the error log.

6-14 Printer Commands

6-14-1 ClearSpoolQueue
Syntax

returnstate = ClearSpoolQueue()

Remarks

Typical Example
ClearSpoolQueue()

Any messages (typically printed alarms) that are queued up waiting to be sent
to the CX-Supervisor Alarm/Message printer is discarded.

6-14-2 EnablePrinting
Syntax

returnstate = EnablePrinting(flag)

Remarks

Typical Example
EnablePrinting(FALSE) - Disables printing
EnablePrinting(TRUE) - Enables printing

While alarm printing is disabled, any new messages are stored but not printed.
When alarm printing is re-enabled, any pending messages are printed (if in
line mode) or added to the current page (if in page mode).

6-14-3 PrintActivePage
Syntax

returnstate = PrintActivePage(flag)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

message string Contains the text string that is displayed in the
Error Log.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

flag bool 0 to disable, 1 to enable.

Printer Commands SECTION 6 Functions and Methods

96

Typical Example
PrintActivePage(TRUE)

The currently active page is sent to the printer. The flag 'TRUE' indicates that
the print dialog is displayed. 'FALSE' causes the print dialog not to be shown.

6-14-4 PrintPage
Syntax

returnstate = PrintPage ("pagename", flag,
printheaderfooter)

Remarks

Typical Example
PrintPage("page1", TRUE)

The CX-Supervisor page is sent to the printer. The flag 'TRUE' indicates that
the print dialog is displayed first to allow for printer configuration. If 'FALSE'
was specified instead of 'TRUE' then the print dialog is not shown, the page is
just printed.

6-14-5 PrintScreen
Syntax

returnstate = PrintScreen(flag)

Remarks

Typical Example
PrintScreen(FALSE)

All CX-Supervisor pages currently on view is printed. The flag 'FALSE'
indicates that the print dialog is not displayed. A flag of 'TRUE' causes the
print dialog to be shown, allowing the user to configure or choose the printer.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

flag bool Flag is to indicate whether the print setup
dialog is to be displayed before printing.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pagename string The name of the page to be printed.

flag bool Flag to indicate whether the print setup dialog
is to be displayed before printing.

printheaderfooter bool Optional. Flag to control if printout details are
included in a header and footer.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

flag bool Flag to indicate whether the print setup dialog
is to be displayed before printing.

Security Commands SECTION 6 Functions and Methods

97

6-14-6 PrintSpoolQueue
Syntax

returnstate = PrintspoolQueue()

Remarks

Typical Example
PrintSpoolQueue

Any message (typically printed alarms) that are queued up waiting to be sent
to the CX-Supervisor Alarm/Message printer is printed immediately.

6-15 Security Commands

6-15-1 Login
Syntax

returnstate = Login(username, password)

Remarks

Typical Examples
Login()

The Login dialog is displayed for user entry.
Login("Designer", "Designer")

The default 'Designer' user is logged in automatically using matching
password.
References
Refer to the CX-Supervisor User Manual for details of Login.

6-15-2 Logout
Syntax

returnstate = Logout()

Remarks

Typical Example
Logout()

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

username text Optional parameter with name of user to login.
If omitted, the login dialog will be shown.

password text Optional parameter with password for user to
login. If used, username must be specified,
even if only empty i.e. "". If omitted, the login
dialog will be shown.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Data Logging Commands SECTION 6 Functions and Methods

98

The user is logged out.
References
Refer to the CX-Supervisor User Manual for details of Logout.

6-15-3 SetupUsers
Syntax

returnstate = SetupUsers()

Remarks

Typical Example
SetupUsers()

The Setup Users dialog is displayed for user entry.
References
Refer to the CX-Supervisor User Manual for details of setting and modifying
user details.

6-15-4 ChangeUserPassword
Syntax

ChangeUserPassword("username","old", "new")

Remarks

Typical Example
ChangeUserPassword("Fred Smith","fred1", "fred2")

The ChangeUserPassword would change ‘Fred Smith’s’ Windows Logon
password from ‘fred1’ to ‘fred2’.
References
Refer to the CX-Supervisor User Manual for details of setting and modifying
user details.

6-16 Data Logging Commands

6-16-1 AuditPoint
Syntax

AuditPoint("pointname")

Remarks

Typical Example

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

username string user whose password should be changed.

old string the existing password.

new string the new password.

Argument Type Description

pointname string Name of the point to be logged into the CFR
database.

Data Logging Commands SECTION 6 Functions and Methods

99

AuditPoint("MyInteger")

This command will cause the value of ‘MyInteger’ to be logged into the CFR
database.

6-16-2 ClearLogFile
Syntax

ClearLogFile("datasetname")

Remarks

Typical Example
ClearLogFile("Process 1")

This command will clear all data from the active (latest) log file for this data set,
and add a 'Clear Event' indicator.

6-16-3 CloseLogFile
Syntax

returnstate = CloseLogFile("datasetname")

or
returnstate = CloseLogFile("databaselink")

Remarks

Typical Example
CloseLogFile("Process 1")

This command will close the active log file for the data set. Logging for this
data set is automatically stopped.

6-16-4 CloseLogView
Syntax

CloseLogView("datasetname")

Remarks

Typical Example
CloseLogView("Process 1")

This command will close the Data Log Viewer, which is displaying the named
data set.

Argument Type Description

datasetname string Name of Data Set to clear as text point or
constant.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

datasetname text Name of Data Set to close as text point or
constant.

databaselink text Name of Database link to close as text point or
constant.

Argument Type Description

datasetname text Name of Data Set to close as text point or
constant.

Data Logging Commands SECTION 6 Functions and Methods

100

6-16-5 ExportAndViewLog
Syntax

ExportAndViewLog ("datasetname", "item list",
"format", file, outputfile)

or
ExportAndViewLog ("datasetname", TextArray, "format", file, outputfile)

Remarks

All these arguments are optional, and may be omitted provided there are no
further arguments i.e. to specify the 'format', 'datasetname' and 'item list' must
be included but 'file' and 'output' may be omitted.
Typical Examples

ExportAndViewLog("Balloon", "*")

or
ExportAndViewLog("Balloon",
"Altitude,Fuel,Burning,Lift,Group 1", "CSV-BDTM", 0,
"output")

or
ItemList[0] = "Altitude"
ItemList[1] = "Fuel"
ItemList[2] = "Burning"
ItemList[3] = "List"
ItemList[4] = "Group 1"
ExportAndViewLog("Balloon", ItemList, "CSV-BDTM", 0,
"output")

Argument Type Description

datasetname text Name of Data Set to close as text point or
constant.

item list string List of Items and/or Groups within the data set
to export, separated by commas. Alternatively
use "*" to export all.

TextArray string
array

A text point, which has an array size specified
as 1 or more elements . Each element holds
an Item or Group name.

format string Either "CSV" or "Text" to specify output format.
May include suffix '-' followed by:
B to exclude break information
D to exclude the log date
T to exclude the log time
M to exclude to log milliseconds
G to not Group 'On Change' data together

file integer Number of file to export where 0 is the latest
(active) file, 1 is the previous file etc.

outputfile string File name for output file. May include full path,
which will be created automatically if it does not
exist.

Data Logging Commands SECTION 6 Functions and Methods

101

All these commands will export all the data in the specified file, for the named
data set to the named output file, in the format specified (as per ExportLog). It
then launches an appropriate viewer to display the file, using the Windows file
associations.

6-16-6 ExportLog
Syntax

ExportLog ("datasetname", "item list", "format", file,
outputfile)

or
ExportLog ("datasetname", TextArray, "format", file,
outputfile)

Remarks

All these arguments are optional, and may be omitted provided there are no
further arguments i.e. to specify the 'format', 'datasetname' and 'item list' must
be included but 'file' and 'output' may be omitted.
Typical Examples

ExportLog("Balloon", "*")

or
ExportLog("Balloon",
"Altitude,Fuel,Burning,Lift,Group 1" "CSV-BDTM", 0,
"output")

or
ItemList[0] = "Altitude"
ItemList[1] = "Fuel"
ItemList[2] = "Burning"
ItemList[3] = "List"

Argument Type Description

datasetname text Name of Data Set to close as text point or
constant.

item list string List of Items and/or Groups within the data set
to export, separated by commas. Alternatively
use "*" to export all.

TextArray string
array

A text point, which has an array size specified
as 1 or more elements . Each element holds
an Item or Group name.

format string Either "CSV" or "Text" to specify output format.
May include suffix '-' followed by:
B to exclude break information
D to exclude the log date
T to exclude the log time
M to exclude to log milliseconds
G to not Group 'On Change' data together

file integer Number of file to export where 0 is the latest
(active) file, 1 is the previous file etc.

outputfile string File name for output file. May include full path,
which will be created automatically if it does not
exist.

Data Logging Commands SECTION 6 Functions and Methods

102

ItemList[4] = "Group 1"
ExportAndViewLog("Balloon", ItemList, "CSV-BDTM", 0,
"output")

All these commands will export all the data in the specified file, for the named
data set to the named output file, in the format specified.

6-16-7 OpenLogFile
Syntax

returnstate = OpenLogFile("datasetname")

or
returnstate = OpenLogFile("databaselink")

Remarks

Typical Example
OpenLogFile("Balloon")

This command will open the log file, ready to start logging. As the function is
disk intensive it should not be called frequently.

6-16-8 OpenLogView
Syntax

OpenLogView("datasetname", "item list", sessionfile)

or
OpenLogView("datasetname", TextArray, sessionfile)

Remarks

Typical Example
OpenLogView("Balloon",
"Altitude,Fuel,Burning,Lift,Group 1")

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

datasetname text Name of Data Set to open as text point or
constant.

databaselink text Name of Database link to open as text point or
constant.

Argument Type Description

datasetname text Name of Data Set to open as text point or
constant.

item list string List of Items and/or Groups within the data set
to view, separated by commas

TextArray string
array

A text point, which has an array size specified
as 1 or more elements. Each element holds an
Item or Group name.

sessionfile string Optional filename of session information file.
The Data Log Viewer is shown with the session
settings (e.g. Window position, size, colours,
grid options etc. stored in the session file. If
omitted, the previous settings are used.

Data Logging Commands SECTION 6 Functions and Methods

103

or
ItemList [0] = "Altitude"
ItemList [1] = "Fuel"
ItemList [2] = "Burning"
ItemList [3] = "Lift"
ItemList [4] = "Group 1"
OpenLogView("Balloon", ItemList)

Both these commands will open the Data Log Viewer, and load the Balloon log
file, and show the named items.

OpenLogView("Balloon", ItemList, "C:\Program
Files\Omron\CX-SUPERVISOR\App\MySessionInfo.txt")

This command will open the Data Log Viewer and Balloon log file as above but
the Data Log Viewer will always appear in the same position, and with the
same settings - not as it was last shown.

6-16-9 StartAuditTrail
Syntax

returnstate = StartAuditTrail(ErrorFlag)

Remarks

Typical Example
StartAuditTrail(AuditError)

This command will start audit trail logging of all items configured to be logged
into the audit trail database, based on the chosen target (i.e. Microsoft Access
or SQL). By default, data will be appended to the audit trail database if one
already exists, otherwise a new database will be created. The ‘Audit Trail
Configuration’ dialog can be used to configure how audit trail data is logged to
a Microsoft Access or SQL database.
If at any time any audit instruction fails, for example the remote database
becomes disconnected, then “AuditError” is set true and can be used to test or
trigger other actions. If AuditError is reset to False then it will automatically be
set True again on any further auditing error.

6-16-10 StopAuditTrail
Syntax

StopAuditTrail()

Typical Example
StopAuditTrail()

This command will stop the current audit trail logging and close the audit trail
database.

Argument Type Description

returnstate bool Optional. 1 if the function is successful and the
audit trail database is opened and logging
started. Otherwise it returns 0.

ErrorFlag bool Optional. At some period of time after
execution, this flag may be set to 1 if an error
occurs.

Database Commands SECTION 6 Functions and Methods

104

6-16-11 StartLogging
Syntax

returnstate = StartLogging("datasetname")

or
returnstate = StartLogging("databaselink")

Remarks

Typical Example
StartLogging("Process 1")

This command will start logging of all items in the named data set. If the file is
closed it will be automatically opened.

6-16-12 StopLogging
Syntax

returnstate = StopLogging("datasetname")

or
returnstate = StopLogging("databaselink")

Remarks

Typical Example
StopLogging("Process 1")

This command will stop logging of all items in the named data set.

6-17 Database Commands

6-17-1 DBAddNew
Description
Adds a new record to a Recordset. This function will fail if the Recordset is
opened with a lock of 'Read Only'.
Syntax

returnstate = DBAddNew(level)

Remarks

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

datasetname text Name of Data Set to open as text point or
constant.

databaselink text Name of Database link to start logging as text
point or constant.

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

datasetname text Name of Data Set to open as text point or
constant.

databaselink text Name of Database link to stop logging as text
point or constant.

Database Commands SECTION 6 Functions and Methods

105

Typical Examples
Result = DBAddNew("Northwind.Order Details")

Using a Recordset connection level, a new record is added with values from
all fields associated with a property type 'Add'. Point 'Result' is set true if this
was successful.

DBAddNew("Northwind.Order Details.OrderID")
DBAddNew("Northwind.Order Details.ProductID")
DBAddNew("Northwind.Order Details.Quantity")
DBAddNew("Northwind.Order Details.UnitPrice")
DBUpdate("Northwind.Order Details")

Using a Field connection level, each required field is added to the new record
using multiple calls to DBAddNew(). When the record is complete, it is added
by calling the DBUpdate() function

6-17-2 DBClose
Description
Closes a Connection or Recordset. Closing a Connection will automatically
close all recordsets associated with it. Recordsets can be closed in isolation
by selecting the appropriate level.
Syntax

returnstate = DBClose(level)

Remarks

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

level text A text point or constant specifying the
connection level. This should be a field or
recordset level.

Note: To use DBAddNew() with a Recordset level the Recordset must be configured
to perform this type of operation i.e. it will need to contain fields for any primary
keys and 'non null' values required to create a new record. When used at
Recordset level all fields associated with the Recordset with property type
'Add' are added (as if calling DBAddNew()) and the record is updated (as if
calling DBUpdate()). Points associated with the 'Add' property can be array
points, thus enabling you to add multiple records in one operation.

Note: When using a Field level connection, the operation may be cancelled at any
stage before the DBUpdate() function is called by calling the DBExecute()
command "CancelUpdate".

Note: Only Fields with a property type of 'Add' can be added to a Recordset. The
value(s) of the associated points at the time DBUpdate() is called will be used
to create the record.

Note: Depending on the ADO provider, the added record may not be visible until the
Recordset is requeried. See DBExecute, parameter Requery for more
information.

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

Database Commands SECTION 6 Functions and Methods

106

Typical Examples
Result = DBClose("Northwind.Order Details")

Closes the 'Order Details' Recordset
Result = DBClose("Northwind")

Closes the connection to the Northwind database, and also any Recordsets
which may be open.

6-17-3 DBDelete
Description
Deletes the specified number of records from the current record position. This
function works only at the Recordset level. This function will fail if the
Recordset is opened with a lock of 'Read Only'.
Syntax

returnstate = DBDelete(level, quantity)

Remarks

Typical Examples
Result = DBDelete("Northwind.Order Details", 10)

Delete the next 10 records in the recordset
DBMove("First")
Result = DBDelete("Northwind.Order Details", 10)

Delete the first 10 records.

6-17-4 DBExecute
Description
The DBExecute function allows the execution of miscellaneous commands
and allows for future expansion by supporting new commands without the
need to create more new DB functions.
Syntax

return = DBExecute(level, command, parameter)

Remarks

level text A text point or constant specifying the
connection level. This should be a field or
recordset level.

Argument Type Description

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This should be a field or
recordset level.

quantity int Number of records to delete.

Argument Type Description

return 1 if the function is successful otherwise 0
except for "Find" and "FindNext" commands
which return the record number if found or if
not, set the current record to EOF and return -
1.

Database Commands SECTION 6 Functions and Methods

107

Typical Examples
Pos = DBExecute("Northwind.Order Details", "Find",
"UnitPrice > 14.00")

Find the next record satisfying the specified criteria, starting from the current
position. Valid search criteria include: "ProductName LIKE 'G*' " wildcard
search finds all records where ProductName starts with 'G', "Quantity = 5",
"Price >= 6.99". Only single search values are allowed, using multiple values
with 'AND' or 'OR' will fail.

DBExecute("Connection1.Recordset1", "Source",
"Table2")

Modify the Recordsets source to open a different table than configured.
DBExecute("Northwind.Shippers", "Filter",
"CompanyName = 'United Package'")

Apply a filter to display only records with a company name 'United Package'
DBExecute("Northwind.Shippers", "Filter", "")

Cancel an existing filter (by passing an empty string)
DBExecute Commands

level text A text point or constant specifying the
connection level, which depends on the
command specified.

command text Command to execute. May be one of the
commands listed below.

parameter text Command parameter only required with certain
commands. For "Connection", this parameter
should hold the new connection string. For
"Find" and "FindNext" this parameter should be
the search criteria. For "Source" this is the
Recordset source. For "Filter" this is the
Recordset filter.

Command Connection
Level

Description

Connection Connection Modify the connection string.

BeginTrans Connection Begins a new Transaction.

CommitTrans Connection Saves any pending changes and ends
the current transaction.

RollbackTrans Connection Cancels any changes made and ends
the transaction.

CommitTransAll Connection Saves all changes and ends all
transactions.

RollbackTransAll Connection Cancels all changes and ends all
transactions.

TransCount Connection Returns the number of pending
transactions.

Requery Recordset Re-run the Recordset Query.

CancelUpdate Recordset Cancel a DBAddNew operation.

Argument Type Description

Database Commands SECTION 6 Functions and Methods

108

6-17-5 DBGetLastError
Description
Returns the last error string generated by the Database provider, and displays
it in a message box.
Syntax

returnstate = DBGetLastError(level, display)

Remarks

Typical Examples
DBGetLastError("Northwind")

or
DBGetLastError("Northwind", TRUE)

Both the above lines will get and display the last error to occur for the
Northwind connection.

ErrMsg = DBGetLastError("Northwind", FALSE)

The last error to occur for the Northwind connection is stored Text point
'ErrMsg', without displaying a message box.

6-17-6 DBMove
Description
The DBMove function enables you to navigate around a Recordset by moving
the position of the 'current record' in the Recordset. When a Recordset is first
opened the first record is the current record.
Syntax

returnstate = DBMove(level, direction, position)

Remarks

Find Recordset Find the specified criteria in a Recordset.

FinNext Recordset Combined DBMove("Next"), DBFind()
operation.

Source Recordset Modify the Recordset source.

Filter Recordset Apply a filter to a Recordset.

Save Recordset Saves a Recordset in XML format.

Command Connection
Level

Description

Argument Type Description

returnstate text The error message from the provider

level text A text point or constant specifying the
connection level. This must be a Connection
level.

display bool Optional flag. By default DBGetLastError will
display the providers error message in a
message box. Setting this flag to FALSE
prevents this action.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

Database Commands SECTION 6 Functions and Methods

109

Typical Examples
DBMove("Northwind.Order Details", "First")

Go to the first record in the Recordset.
pos = 3
DBMove("Northwind.Order Details", "Position", pos)

Go to the third record in the Recordset.
DBMove("Northwind.Order Details", "Page", 6)

Go to the sixth page in the Recordset.

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

direction text A text string indicating where to move to. May
be one of:
"First"
"Last"
"Next"
"Previous"
"Position"
"FirstPage"
"LastPage"
"NextPage"
"PreviousPage"
"Page"
"Bookmark"

position int/real This optional parameter is only required when
directions of "Position", "Page" and "Bookmark"
are used. When used with "Position" and
"Page" this parameter must be an integer, and
is the record or page number to move to.
When used with "Bookmark" this parameter
must be a real.

Argument Type Description

Note: Bookmarks are returned from the function 'DBProperty', they enable you to
return to a 'marked' record, even after records have been added or deleted

Note: Some Providers do not support moving in the "Previous" direction i.e. cursors
are 'Forward-Only'. Some 'Forward-Only' providers do allow moving "First",
while some are strictly Forward-Only i.e. the Recordset has to be Re-queried
effectively a combined Close then Open operation to reset the cursor back to
the start of the Recordset. Some Providers that do support moving "Previous"
do not support moving to "Position". However, in order to be consistent, CX-
Supervisor ensures that that all operations (except "Bookmarks") will work for
any connection to any provider but you need to bear in mind when designing
applications that use 'Forward-Only' cursors, that there may be some 'long-
winded' acrobatics being performed behind the scenes. See DBSupports() for
details of how to check the type of cursor in force.

Note: Bookmarks will only work if specifically supported by the Provider.

Database Commands SECTION 6 Functions and Methods

110

6-17-7 DBOpen
Description
Opens a Connection or Recordset. Opening a Connection will automatically
open all recordsets associated with it, that are marked as auto open.
Recordsets can be opened in isolation by selecting the appropriate level.
Syntax

returnstate = DBOpen(level)

Remarks

Typical Examples
DBOpen("Northwind")

Open the connection to the Northwind database, and automatically open any
Recordsets set to open on connection.

done = DBOpen("Northwind.Order Details")

Just open a specific Recordset.

6-17-8 DBProperty
Description
Returns the requested property. This function operates on the Recordset and
Field levels. The type of the value returned depends on the property
requested.
Syntax

returnstate = DBProperty(level, property)

Remarks

Typical Examples
Page = DBProperty("CSV.Result", "CurrentPage")

Get the current page for the CSV.Result Recordset.
FieldSize = DBProperty("Northwind.Customers.Address",
"Size")

Get the size for the 'Address' field.

Recordset Properties
The properties of a Recordset are:

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

property text The name of the property to get. For details
see the Recordset Properties and Field
Properties tables.

Note: The Recordset will only return valid properties when it is Open.

Database Commands SECTION 6 Functions and Methods

111

Field Properties
The properties of a Field are

6-17-9 DBRead
Description
Reads a record from a Recordset to the associated point(s), or if associated
points are array points, reads a whole page of records. This function operates
on both Recordset and Field levels. At the Field level the associated column
values from the Recordsets current position will be copied into the Point
(number of elements copied = number of elements in the Point, no paging
applies at the Field level).
Syntax

returnstate = DBRead(level, reset)

Remarks

Property Description Return
type

"CurrentRecord "Current cursor position Integer

"RecordCount "Number of records in the Recordset. Integer

"Bookmark "Record marker. Real

"PageCount "Number of pages in the Recordset. Integer

"PageSize "Number of records in a page. Integer

"CurrentPage "Page in which the cursor position resides. Integer

"Source "Command or SQL that created the Recordset. Text

"Sort "Field name(s) the Recordset is sorted on. Text

"FieldCount "Number of fields(columns) in the Recordset. Integer

"BOF "Current position is at the start of the
Recordset.

Bool

"EOF "Current position is at the end of the Recordset. Bool

Property Description Return
type

"Value "Value of the field at the current position. As type
of field

"Name "Name of the Field. String

"Type "The fields data type. String

"Size "Maximum width of the field. Integer

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

Database Commands SECTION 6 Functions and Methods

112

Typical Examples
DBRead("Northwind.Customers")

Read the next page of records from the 'Customers' Recordset.
DBRead("Northwind.Customers", FALSE)

Read the next page of records from the 'Customers' Recordset, and leave the
cursor at the next record.

DBRead("Northwind.Customers.Address")

The Address field is read. If it is an array point, the Address is read from
subsequent records until the array has been filled.

6-17-10 DBSchema
Description
Issues commands to read schema results or properties or set up new schema
criteria. This function operates only at a Schema level.
Syntax

return = DBSchema(level, command, parameters...)

Remarks

reset bool This argument is optional and may be omitted.
If omitted or TRUE, when the read is complete
the record cursor is reset to the position prior to
reading.

Argument Type Description

Note: Use with reset = TRUE is useful if the read operation is being combined with a
subsequent Write operation i.e. you can read in a set of records - resetting the
cursor, make modifications to some of the fields and then Write the changes
back to the Recordset.

Note: Use with reset = FALSE will leave the current position at the start of the next
set of records. This option can be of benefit if the Provider only supports
forward moving cursors, or you simply want to step through the records a page
at a time.

Argument Type Description

return Value returned by command. For some
commands e.g. "RecordCount" this is an
integer value, for other commands this is a text
value.

level text A text point or constant specifying the
connection level. This must be a Schema
level.

Database Commands SECTION 6 Functions and Methods

113

Typical Examples
NumberOfRecords = DBSchema("Invoice.Data Types",
"RecordCount")

Read the Number of records in the Schema.
DBSchema("Invoice.Data types", "Read", 2)

Read Schema page 2 results into the associated point.
DBSchema("Invoice.Data Types", "Set", "Columns",
"COLUMN_NAME", "")

Set a new Schema to return column names.

6-17-11 DBState
Description
Reports if the specified level is in the requested state.
Syntax

return = DBState(level, state)

Remarks

command text The command must be one of the following:
• "Read" - Transfers a schema page into the

associated point
• "Set" - Enables schema details to be

modified
• "Type" - Returns the current Schema Type
• "Criteria"- Returns the current Schema

Criteria
• "Filter" - Returns the current Schema Filter
• "RecordCount" - Returns the number of

records in the current Schema
• "PageCount" - Returns the number of

pages in the current Schema
• "CurrentPage" - Returns the current

Schema page

parameters Some commands require 1 or more extra
parameters. "Read" takes an optional
parameter 'Page Number' of type integer. If no
'Page Number' is supplied, this function will
return page 1 when first called and
automatically return the next page of schemas
for each subsequent call, cycling back to the
beginning when all pages have been returned.
"Set" takes three text parameters for Schema
'Name', 'Criteria' and 'Filter'.

Argument Type Description

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

Database Commands SECTION 6 Functions and Methods

114

Typical Examples
State = DBState("Invoice", "Closed")

Checks if the Connection "Invoice" is currently closed.
State = DBState("Northwind.Customers", "Open")

Checks if the Recordset "Customers" is currently open.

6-17-12 DBSupports
Description
Returns TRUE if the specified Recordset supports the requested operation.
Syntax

return = DBSupports(level, operation)

Remarks

Typical Example
Result = DBSupports("CSV.Recordset1", "Delete")

Checks if records can be deleted in 'Recordset1'

6-17-13 DBUpdate
Description
Update the record being added in a Recordset. Used in conjunction with
DBAddNew to commit a new record.

Syntax
returnstate = DBUpdate(level)

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

state text The requested state must be either "Open" or
"Closed"

Argument Type Description

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

operation text The requested operation may be one of:
"AddNew"
"Bookmark"
"Delete"
"Find"
"MovePrevious"
"Update"

Note: If the "MovePrevious" operation is not supported then only 'Forward-Only'
cursor movements are supported.

Note: DBUpdate is ONLY required when DBAddNew has been used at the Field
level. When DBAddNew is used at the Recordset level an additional DBUpdate
is not required as this is performed automatically.

Database Commands SECTION 6 Functions and Methods

115

Remarks

Typical Example
DBAddNew("Northwind.Order Details.OrderID")
DBAddNew("Northwind.Order Details.ProductID")
DBAddNew("Northwind.Order Details.Quantity")
DBAddNew("Northwind.Order Details.UnitPrice")
DBUpdate("Northwind.Order Details")

Each required field is added to the new record using multiple calls to
DBAddNew(). When the record is complete, it is added to the Recordset by
calling the DBUpdate() function.

6-17-14 DBWrite
Description
Writes a set of records into a Recordset from the associated point(s). This
function operates on both Recordset and Field levels. At the Recordset level
all the associated points values from the Points will be written into the
Recordset starting at the current record (1 page of values will be written for
each Point). At the Field level the associated values from the point are written
into the Recordsets starting at the current position. The number of elements
written = number of elements in the Point. This function will fail, if the
Recordset is opened with a Lock of 'Read Only'.
Syntax

return = DBWrite(level, reset)

Remarks

Typical Examples
DBWrite("Northwind.Customers")

Write all point values to the associated Customers fields.
DBWrite("Northwind.Customers.Address", FALSE)

Write the point values to the Address column, and leave the cursor at the next
set of records.

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

reset bool This argument is optional and may be omitted.
If omitted or TRUE, when the write is complete
the record cursor is reset to the position prior to
writing.

Serial Port Functions SECTION 6 Functions and Methods

116

6-18 Serial Port Functions

6-18-1 InputCOMPort
Description
Sets the serial communications port for receiving ASCII text messages. Any
message received is placed in the text point. The boolean flag is set true to
indicate that a message has been received. It is up to the user to reset this
flag between receiving messages in order to indicate that a new message is
present. This function need only be called once to receive multiple messages
every time the termination character is recieved.
Syntax

ReturnState = InputCOMPort(PortNumber, Message,
MessagePresent, MaxLength)

Remarks

Typical Example:
bState = InputCOMPort(1, Msg, bTransmission)

6-18-2 OutputCOMPort
Description
Sends an ASCII text message out through the designated serial
communications port.
Syntax

ReturnState = OutputCOMPort(PortNumber, Message)

Remarks

Typical Example:
bState = OutputCOMPort(1, Msg)

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer The number of the port previously configured
using the function SetupCOMPort and opened
with OpenCOMPort.

message Text Text point to hold ASCII text message received
through the port.

MessagePresent Bool Boolean point indicating that a message has
been received.

MaxLength Integer Optional. Maximum length of transmission
before input is terminated. Used where fixed
length packets are received without termination
characters.

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer The number of the port previously configured
using the function SetupCOMPort and opened
with OpenCOMPort.

message Text Text point to hold ASCII text message to send
through the port.

Serial Port Functions SECTION 6 Functions and Methods

117

6-18-3 CloseCOMPort
Description
Closes the designated serial communications port on the PC. The port must
have been configured and opened before it can be closed.
Syntax

ReturnState = CloseCOMPort(PortNumber)

Remarks

Typical Example:
bState = CloseCOMPort(1)

6-18-4 OpenCOMPort
Description
Opens the designated serial communications port on the PC for transmitting or
receiving data. The port must have been configured before it can be opened.
Syntax

ReturnState = OpenCOMPort(PortNumber)

Remarks

Typical Example:
bState = OpenCOMPort(1)

6-18-5 SetupCOMPort
Description
Configures the designated serial communications port on the PC for
transmitting or receiving data.
Syntax

ReturnState = SetupCOMPort(PortNumber,
ConfigurationString, HandShaking, TerminationChar,
ControlCharFlag, TermMode)

Remarks

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer The number of the port previously configured
using the function SetupCOMPort and opened
with OpenCOMPort.

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer The number of the port previously configured
using the function SetupCOMPort.

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer A string indicating the desired Baud rate, Parity,
number of data bits and stop bits.

ActiveX Functions SECTION 6 Functions and Methods

118

Typical Example:
bState = SetupCOMPort(2, "9600,N,8,1", 0, 0x0D, TRUE)

6-19 ActiveX Functions

6-19-1 GetProperty
Description
Gets the value of a property of an OLE object and stores it in a point.
Syntax

propertyvalue = GetProperty(object, property, ...)

Remarks

Typical Examples
OLE1Height = GetProperty("OLE1", "Height")

This will read the property 'Height' from the OLE object 'OLE1' and store it in
the point 'OLEHeight'.

DM100Value = GetProperty("CXComms1", "DM", 100)

HandShaking Integer The required handshaking protocol. Valid
values are
0 - None
1 - XonXoff
2 - RTS
3 - RTS & XonXoff

TerminationChar Integer A character indicating the end of the message.

ControlCharFlag Bool A flag indicating that control characters
contained in a received message should be
Ignored.

TermMode Integer Optional. Flags to indicate how to use the
termination character
@ONINPUT (or value 1) - Function
InputComPort expects Termination Character.
This is the default value if omitted.
@ONOUTPUT (or value 2) -Function
OutputComPort appends Termination
Character.
@ONINPUT | @ONOUTPUT (or value 3) -
both of the above.

Argument Type Description

Argument Type Description

propertyvalue n/a The value of the property. Type is dependant
on the type of the property.

object Text The name of the OLE object to get the property
of.

property Text The name of the property to get.

- - - n/a Any number of parameters for the property.

ActiveX Functions SECTION 6 Functions and Methods

119

This will read the property 'DM' (with one parameter 100) from the OLE object
'CXComms1' and store it in the point 'DM100Value'.

6-19-2 PutProperty
Description
Puts a value stored in a point into the property of an OLE object.
Syntax

PutProperty(object, property, ..., value)

Remarks

Typical Examples
PutProperty("OLE1", "Left", NewLeftValue)

This will write the value stored in the point NewLeftValue to the property 'Left'
in the OLE object 'OLE1'.

PutProperty("CXComms1", "DM" 10, NewValue)

This will write the value stored in the point NewValue to the property 'DM' (with
one parameter 10) in the OLE object 'CXComms1'.

PutProperty("Gauge1", "Value", 25.2)

This will write the value 25.2 to the object 'Gauge1'.

6-19-3 Execute
Description
Execute a method of an OLE object.
Syntax

Execute(object, method, ...)

Remarks

Typical Examples
Execute("OLE1", "Start")

This will call the method 'Start' on the object 'OLE1'.
Execute("CXComms1", "OpenPLC", "MyPLC")

This will call the method 'OpenPLC' with one text parameter 'MyPLC' on the
OLE object 'CXComms1'

Argument Type Description

object Text The name of the OLE object containing the
property to change.

property Text The name of the property to put.

- - - n/a Any number of parameters for the property.

value n/a The value to write to the property. Type is
dependant on the type of property. Can also be
a number.

Argument Type Description

object Text The name of the OLE object.

method Text The name of the method to execute.

- - - n/a Any number of parameters for the method.

ActiveX Functions SECTION 6 Functions and Methods

120

6-19-4 ExecuteVBScript
Description
Creates aliases allowing Visual Basic Script to be executed in line. This uses
the Windows Scripting Host. See chapter 5 for a list of supported functions
and details of the Windows Scripting Host.
Syntax

@VBSCRIPT
@ENDSCRIPT

Typical Examples
@VBSCRIPT

OLE1.LEFT = Point("PointName")
@ENDSCRIPT

This Visual Basic Script will write the value from the point 'PointName' into the
property 'Left' of the OLE object 'OLE1'.

6-19-5 ExecuteJScript
Description
Creates aliases allowing Java Script to be executed in line. See Appendix C
for a list of supported functions and details of the Windows Scripting Host.
Syntax

@JSCRIPT
@ENDSCRIPT

Typical Examples
@JSCRIPT

Point("PointName") = OLE_1.Height;
@ENDSCRIPT

This Java Script will write the value of the property 'Height' from the OLE
object 'OLE1' into the Point named 'PointName'.

6-19-6 ExecuteVBScriptFile
Description
Allows Visual Basic script stored in a text file to be executed. This uses the
windows scripting host which must be installed. See chapter 5 for a list of
supported functions.
Syntax

returnstate = ExecuteVBScriptFile(scriptfile)

Remarks

Typical Examples
returnstate = ExecuteVBScriptFile("c:\vbscript.txt")

This will execute the Visual Basic Script stored in "c:\vbscript.txt".

Note: The Java Script can not include the { or } characters. To use these, put the
script in a text file and use the ExecuteJScriptFile function.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

scriptfile Text The name of the file with the Visual Basic Script
to execute.

ActiveX Functions SECTION 6 Functions and Methods

121

6-19-7 ExecuteJScriptFile
Description
Allows Java script stored in a text file to be executed. This uses the windows
scripting host which must be installed. See Appendix C for a list of supported
functions.
Syntax

returnstate = ExecuteJScriptFile(scriptfile)

Remarks

Typical Examples
returnstate = ExecuteJScriptFile("c:\jscript.txt")

This will execute the Java Script stored in "c:\jscript.txt".

6-19-8 GenerateEvent
Description
This command is only used in conjunction with a remote connection using a
CX-Supervisor Communications control (see User Manual Chapter 15,
Connecting to remote applications). This command allows the Server machine
to post unsolicited data back to the client machine. This data is captured in the
client's "OnEvent" handler.
The data for the parameters is entirely at the designer's discretion, depending
on what the client needs to be informed of.
Syntax

returnstate = GenerateEvent(param1, param2, param3)

Remarks

Typical Examples
returnstate = GenerateEvent ("Archive", "", "")

An 'Archive'event is sent to the client application that may force the client to
perform some specified archive operation. The second and third parameters
are not used.

returnstate = GenerateEvent ("[Alarm Set]", "Boiler
alarm", "95.5")

An event is sent to the client application which can be interpreted as 'The
Boiler alarm has been set with a process value of 95.5'.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

scriptfile Text The name of the file with the Java Script to
execute.

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

param1 Text Optional. Parameter of data to send

param2 Text Optional. Parameter of data to send

param3 Text Optional. Parameter of data to send

ActiveX Functions SECTION 6 Functions and Methods

122

Balloon Script SECTION 7 Script Example

123

SECTION 7
Script Example

This chapter provides an example application for a script. The script is a
typical script exercising the basic commands. It is described twice, once as a
whole, and once on a line by line basis.

7-1 Balloon Script
The following script applies to a simple game.

The user must attempt to land the balloon on the plateau on the right, using
the Max/Min slider control throughout the flight. Clicking Reset clears the
current game and initialises a new game. Clicking the on/off pushbutton starts
the game.
When the balloon is airborne, clouds move slowly horizontally and change
colour slightly. Clicking Help at any time brings up a special help page;
clicking Close from this help page returns the user to the game. The blue
gauge shows the amount of fuel consumed and left.
The project consists of three page scripts and one object. The three page
scripts are initiated at varied intervals: 10 milliseconds, 100 milliseconds and
1000 milliseconds.
The page script initiated at intervals of 10 milliseconds determines the position
of each cloud, and the speed at which each cloud moves. The page script
initiated at intervals of 1000 milliseconds determines how the balloon reacts to
the conditions.
The page script initiated at intervals of 100 milliseconds provides the main
configuration of the game, reacting to user input and moving the balloon
accordingly. This page script is as follows:

IF burner AND alt > 400.0 THEN
burner = FALSE

ENDIF
IF burner THEN

fuel = fuel - rate
IF fuel < 0.0 THEN

fuel = 0.0
burner = FALSE

Balloon Script SECTION 7 Script Example

124

ENDIF
ENDIF

IF burner AND fuel > 0.0 AND rate > 0.0 THEN
lift = lift + rate/5.0

ELSE
IF alt > 140.0 THEN

lift = lift - 0.2
ENDIF

ENDIF
IF lift < -10.0 THEN

lift = -10.0
ENDIF
alt = alt + lift
IF alt <= 140.0 THEN

IF distance>630.0 AND distance<660.0 AND lift>=-
3.0 THEN

winner = TRUE
burner = FALSE

ENDIF
IF lift < -3.0 then

crash = TRUE
burner = FALSE

ENDIF
lift = 0.0

ENDIF

speed = (alt-140.0)/100.0
IF speed < 0.0 then

speed = 0.0
ENDIF

distance = distance + speed

The following paragraphs describe the above script on a line by line basis.
IF burner AND alt > 400.0 THEN

burner = FALSE
ENDIF

If the fuel burner is on, based on Boolean point 'burner' set to 'TRUE', and the
altitude of the balloon, based on point 'alt', exceeds 400, then the fuel burner is
turned off. Point 'alt' is measured in pixels between 140 and 1000, so the
value of 400 is the height in pixels.

IF burner THEN
fuel = fuel - rate
IF fuel < 0.0 THEN

fuel = 0.0
burner = FALSE

ENDIF
ENDIF

If the fuel burner is on, the amount of fuel remaining decreases by the rate of
ascent. The rate of ascent, point 'rate' can be modified by moving the slider. If
point 'fuel' currently has a value of less than 0, then there is no fuel left and the
fuel burner is turned off.

IF burner AND fuel > 0.0 AND rate > 0.0 THEN
lift = lift + rate/5.0

ELSE

Balloon Script SECTION 7 Script Example

125

IF alt > 140.0 THEN
lift = lift - 0.2

ENDIF
ENDIF

If the fuel burner is on, and there is still fuel left, and the rate of ascent exceeds
0 (the balloon has taken off) then point 'lift' is incremented by the rate of ascent
divided by 5 to allow the balloon to climb. Otherwise the balloon must be
descending and point 'lift' is decremented by 0.2.

IF lift < -10.0 THEN
lift = -10.0

ENDIF

Once point 'lift' reaches -10, it is not allowed to go lower.
alt = alt + lift

The altitude of the balloon is incremented by point 'lift'.
IF alt <= 140.0 THEN

IF distance>630.0 AND distance<660.0 AND lift>=-
3.0 THEN

winner = TRUE
burner = FALSE

ENDIF

If the balloon has hit the ground (point 'alt' equals 140), then provided it is on
the plateaux (the position of the balloon in pixels defined by point 'distance' is
between 630 and 660) and the rate of descent is not too fast (defined by point
'lift'), then the game is won.

 IF lift < -3.0 then
crash = TRUE
burner = FALSE

 ENDIF

If the balloon has hit the ground (point 'alt' equals 140), then if the rate of
descent is not too fast (defined by point 'lift'), then the game is lost.

lift = 0.0
ENDIF

Point 'lift' is reset.
speed = (alt-140.0)/100.0
IF speed < 0.0 then

speed = 0.0
ENDIF

Point 'speed' is calculated based on the altitude.
distance = distance + speed

Point 'distance' is calculated based on the speed.

Balloon Script SECTION 7 Script Example

126

SECTION 8 Colour Palette

127

SECTION 8
Colour Palette

This chapter describes the colour palette. A colour may be specified by its
name or number. The following table provides a cross-reference between
these. Some colour names made up of more than one word are separated by
an underscore or a hyphen. A specified colour can be changed in the CX-
Supervisor development environment for the current session; such changes
cannot be saved to a Page or Project, unless colours are changed from the
Colour Palette located under the General Settings submenu in the Project
menu.
Using a 16 colour-based screen resolution (consult the Microsoft Windows
documentation for further information) colours 16 to 65 are dithered from the
sixteen base colours. Higher colour-based resolutions are not dithered.

No. Colour No. Colour

0 black 12 purple

1 blue 13 olive

2 green 14 dark_grey

3 cyan 15 light-grey

4 red 16 pale-green

5 magenta 17 light-blue

6 yellow 18 off-white

7 white 19 grey

8 dark_blue 20 cherry

9 dark_green 21 silver

10 blue-green 22 apple

11 brown 23 orange

24-65 Not used

SECTION 8 Colour Palette

128

Component Properties Appendix A OPC Communications Control

129

Appendix A
OPC Communications Control

This appendix contains a list of the available component properties and gives
details of the Visual Basic script interface. These properties can be set in run
time by using a Visual Basic script command - for example: -
OMRONCXOPCCommunicationsControl1.ServerNodeName = "\\NAME"
The Script Interface defines the Visual Basic script interface for the OPC
communications control. See ExecuteVBScript script functions for more
information on running Visual Basic Script.

A.1 Component Properties

A.2 Script Interface
The Script Interface defines the methods for the OPC communications control.

A.3 Functions

A.3.1 Value
Reads or writes the value of an OPC item.
Example 1 - Reading a value:

intVal =
 OMRONCXOPCCommunicationsControl1.Value
("MyGroup", "BoilerTemp")

In this example, the OPC item 'BoilerTemp' in the OPC group called
"MyGroup" will be read from the OPC Server and will be stored in 'intVal'.
Example 2 - Writing a value:

OMRONCXOPCCommunicationsControl1.Value("MyGroup",
"BoilerTemp") = 50

In this example, the value 50 will be written to the OPC item 'BoilerTemp'.

Property Title Example Description

DisplayErrors True
False

When set True, the object will display a
message box for any errors. If set to
False, error messages are not displayed.

ProjectName Name of .OPC file containing the client
setup.

ServerComputerName "MyPC "This is the name of the PC with the
OPC Server.

ServerName Name of the OPC Server to connect to.
e.g. OMRON.OpenDataServer.1

ServerProjectName Optional filename, which if specified
causes the OPC Server to use the
specified file, if supported by the server.

Value Function for getting and setting an OPC item value.

Read Function to read the value of an OPC item.

Write Function to write the value of an OPC item.

Functions Appendix A OPC Communications Control

130

A.3.2 Read
Reads the value of an OPC item.
Example of synchronous read:

intVal =
 OMRONCXOPCCommunicationsControl1.Read
("MyGroup", "BoilerTemp")

In this example, the OPC item 'BoilerTemp' in the OPC group called
"MyGroup" will be read from the OPC Server and will be stored in 'intVal'. The
script will wait for the read operation to complete before continuing to execute
the next line. This is identical to the operation of the 'Value' method.

A.3.3 Write
Writes the value of an OPC item.
Example of synchronous write:

OMRONCXOPCCommunicationsControl1.Write
"MyGroup", "BoilerTemp", NewValue

In this example, 'NewValue' will be written to the OPC item 'BoilerTemp' in the
OPC group called "MyGroup". The script will wait for the write operation to
complete before continuing to execute the next line. This is identical to the
operation of the 'Value' method.

Note: 'Value' is the default property so is assumed if omitted. Therefore, the
following examples are the same:

intVal =
OMRONCXOPCCommunicationsControl1.Value("MyGroup",
"BoilerTemp")

and
intVal = OMRONCXOPCCommunicationsControl1 ("MyGroup",
"BoilerTemp")

Functions Appendix B CX-Server Communications Control

131

Appendix B
CX-Server Communications Control

When the Project Settings->Advanced settings option "Allow advanced script
access to PLC via 'CXServer' control" option is selected a CX-Server
Communications Control is automaticalled created to allow script access to
CX-Server functions. This ActiveX control is always named 'CXServer'
(without any hyphen) and can always be used from any script.
This appendix contains a list of the available component properties and
methods on the script interface.

B.1 Functions
Value Function for getting and setting an area of memory in a

PLC. This function allows logical names to be used. If
an array is used, the first element is returned.

Values Function for getting and setting an area of memory in a
PLC. This function allows logical names to be used. If
an array is used then a SAFEARRAY is returned with all
values.

SetDefaultPLC Function for setting the default PLC. This is primarily
used when a project contains multiple PLCs.

OpenPLC Opens the specific PLC for communications.

ClosePLC Closes the specific PLC.

Read Function to read the value of a PLC point

Write Function to write the value of a PLC point

ReadArea Function for reading a block of memory from the PLC.

WriteArea Function for writing a block of memory to the PLC.

RunMode Function for reading / writing the current mode of the
PLC.

TypeName Function for reading the PLC type (e.g. CQM1H).

IsPointValid Checks a point name is valid.

PLC Memory
Functions

A, AR, C, CIO, D, DM, DR, E, EM, G, GR, H, IR, LR, SR,
ST, T, TC, TK, W.
Functions for getting and setting the memory areas in the
PLC.

ListPLCs Property. Holds a list of all PLC names configured in the
project file. This property is read only

ListPoints Property. Holds a list of all point names configured in the
project file. This property is read only.

IsBadQuality Checks whether a point is currently indicating "bad
quality".

ClockRead Reads the PLC Clock

ClockWrite Sets the PLC Clock

RawFINS Function that enables raw FINS commands to be sent to
a specified PLC.

Value Appendix B CX-Server Communications Control

132

B.2 Value
Reads the value of an address from a PLC, or writes a value to an address in
a PLC. This function allows logical names.
Example 1 - Reading a value from the PLC using a logical name.

intVal = CXServer.Value("BoilerTemp")

or
intVal = CXServer ("BoilerTemp")

In these examples, the PLC address associated with 'BoilerTemp' will be read
from the PLC and stored in 'intVal'. "Value" is the default property and does
not have to be specified.
Example 2 - Writing a value to the PLC using a logical name.

CXServer.Value("BoilerTemp") = 50

or
CXServer ("BoilerTemp") = 50

In these examples, the value 50 will be written to the PLC address associated
with 'BoilerTemp'. "Value" is the default property and does not have to be
specified.

B.3 Values
Reads an array of values from a PLC, or writes an array of values to a PLC.
This function allows logical names. If an array is used then a SAFEARRAY is
returned with all values.
Example 1 - Reading an array of values from the PLC using a logical name.

SomeArray = CXServer.Values("BoilerTemps")

Example 2 - Writing an array of values to the PLC using a logical name.
CXServer.Values("BoilerTemps") = SomeArray

Active Function for returning the connection status of a
specified PLC.

TCGetStatus Function for returning the device status of a specified
temperature controller

TCRemoteLocal Function for switching a specified temperature controller
into Remote or Local mode

SetDeviceAddress Sets PLC Network, Node, and Unit number and IP
address

SetDeviceConfig Sets any element of device configuration

GetDeviceConfig Gets any element of device configuration

UploadProgram Uploads a program from a PLC

DownloadProgram Downloads a program to a PLC

Protect Protects (or releases protection on) program memory

LastErrorString Description of last error that occurred

SetDefaultPLC Appendix B CX-Server Communications Control

133

B.4 SetDefaultPLC
The 'SetDefaultPLC' function can be used to inform the script parser that a
particular PLC is has been set as the default. Once a default PLC has been
set, then it is not necessary (with some functions) to specify a PLC name. For
example,

CXServer.SetDefaultPLC("MyPLC")
intVal = CXServer.Value("BoilerTemp1")
CXServer.Value("BoilerTemp1") = 75
intVal = CXServer.Value("DM50")

Each 'Value' function above will access data in the PLC called 'MyPLC'.

B.5 OpenPLC
Opens a PLC for communications. If no PLC is specified then the default PLC
is opened.
Example 1:

CXServer.SetDefaultPLC("MyPLC")
CXServer.OpenPLC()
CXServer.DM(100) = 10
CXServer.DM(50) = 10

Example 2:
CXServer.OpenPLC("MyPLC")
CXServer.DM(100) = 10

B.6 ClosePLC
Closes a previously opened PLC. If no PLC is specified then the default PLC
is closed.
Example:

CXServer.ClosePLC("MyPLC")

B.7 Read
Function to read the value of a PLC point.
Example of synchronous Read

intVal = CXServer.Read("MyPLC", "MyPoint", 0)

In this example, the Point 'MyPoint' will be read from the PLC 'MyPLC' and
stored in 'intVal'. The script will wait for the read operation to complete before
continuing to execute the next line due to the '0' parameter. This is identical to
the operation of the 'Value' method.

B.8 Write
Function to write the value of a PLC point.
Example of synchronous write:

CXServer.Write("MyPLC", "MyPoint", NewValue, 0)

Note: If there is only 1 PLC in the project then it is not necessary to call the
'SetDefaultPLC' function. The first PLC in a project will automatically be set as
the default PLC.

Note: If the PLC is not open, then this command will cause it to be opened, and then
closed after the read is complete. If more than one read or write operation is to
be performed, it is considerably faster and more efficient to use the OpenPLC
command first, do all the reading and writing, and then (if required) use the
ClosePLC command to close the PLC.

ReadArea Appendix B CX-Server Communications Control

134

In this example, 'NewValue' will be written to the point 'MyPoint' in the PLC
called 'MyPLC'. The script will wait for the write operation to complete before
continuing to execute the next line due to the '0' parameter. This is identical to
the operation of the 'Value' method.

B.9 ReadArea
Reads a specified block of memory from a PLC.
Examples of synchronous read:

MyVariant = CXServer.ReadArea("MyPLC/DM0", 12, vbString)
MyVariant = CXServer.ReadArea("BoilerTemp",10, vbInteger)
MyVariant = CXServer.ReadArea("BoilerTemp", 20)

In the first example, DM0 to DM11 will be read as characters (part of a string)
from 'MyPLC' and will be stored in 'MyVariant'. The second example
demonstrates that it is also possible to use a logical name for the start
address, and that any VB variant types (such as vbInteger) can be used. The
third example shows that the VB Variant type parameter is optional - if none is
specified then vbInteger is assumed. The script will wait for the read operation
to complete before continuing to execute the next line.

Note: If the PLC is not open, then this command will cause it to be opened, and then
closed after the write is complete. If more than one read or write operation is
to be performed, it is considerably faster and more efficient to use the
OpenPLC command first, do all the reading and writing, and then (if required)
use the ClosePLC command to close the PLC.

Note: If accessing from a CX-Supervisor script, the following integral values should
be used for the return type:

Constant Value Description

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer subtype

vbLong 3 Long subtype

vbSingle 4 Single subtype

vbSingle 5 Double subtype

vbCurrency 6 Currency subtype

vbDate 7 Date subtype

vbString 8 String subtype

vbObject 9 Object

vbError 10 Error subtype

vbBoolean 11 Boolean subtype

vbVariant 12 Variant (used only for arrays of variants)

vbDataObject 13 Data access object

vbDecimal 14 Decimal subtype

vbByte 17 Byte subtype

WriteArea Appendix B CX-Server Communications Control

135

B.10 WriteArea
Writes a block of memory to a specified area in a PLC.
Examples of synchronous write:

MyString = "TestString"
CXServer.WriteArea "MyPLC/DM50", 10, MyString
Dim newValue(2)
newValue(1) = 0
newValue(2) = 1
CXServer.WriteArea "BoilerTemp",2,newValue

In the first example, the contents of 'MyString' will be written into DM50 to
DM54. Any additional data in 'MyString' will be ignored (i.e. if 'MyString' is 15
characters in length then the first 10 characters will be written to DM50 to
DM54 and the remaining 5 characters will be ignored - {Note: each PLC
address holds 2 characters}). The second example shows that a logical name
can be used. The script will wait for the write operation to complete before
continuing to execute the next line.

B.11 RunMode
Reads the current operating mode of a PLC (Stop/Program, Debug, Monitor,
Run), where 0=Stop/Program mode, 1=Debug mode, 2=Monitor mode and
4=Run mode.
Example

intMode = CXServer.RunMode("MyPLC")

In this example, the operating mode would be read from 'MyPLC' and stored in
'intMode'. If 'MyPLC' was in 'Monitor' mode then 'intMode' would be set to the
value 2.

B.12 TypeName
Reads the PLC model name of a PLC (e.g. C200H, CQM1H, CVM1 etc).
Example

strPLCType = CXServer.TypeName("MyPLC")

In this example, the PLC model type will be read from 'MyPLC' and will be
stored in 'strPLCType'.

B.13 IsPointValid
Checks if a Point name has been defined in the CX-Server project file.
Examples

bValid = CXServer.IsPointValid("MyPoint")
bValid = CXServer.IsPointValid("MyPoint", "MyPLC")

In both examples, the boolean variable bValid is set True if the point "MyPoint"
has been defined.

B.14 PLC Memory Functions
(A, AR, C, CIO, D, DM, DR, E, EM, G, GR, H, IR, LR, SR, ST, T, TC, TK, W)

vbArray 8192 Array

Constant Value Description

ListPLCs Appendix B CX-Server Communications Control

136

All PLC memory functions (e.g. A, AR, D, DM etc.) work in exactly the same
way. The following examples use the DM function to get and set the value of a
DM address in a PLC.
Example 1

intVal = CXServer.DM(100)

In this example, the contents of DM100 will be read from the PLC and stored
in 'intVal'.

Example 2
CXServer.DM(100) = 75

In this example, the value 75 will be written to DM100 in the PLC.
Bit addressing, that is accessing data from individual memory bits, is also
supported by these memory areas: IR, AR, HR and CIO.
Example 3

bVal = CXServer.IR("100.2")

In this example, the status of bit IR100.2 (i.e. bit 2 of IR100) will be read from
the PLC and stored in 'bVal' (e.g. 'bVal' will be set to TRUE or FALSE).
Example 4

CXServer.IR("100.2") = True

In this example, bit IR100.2 (i.e. bit 2 of IR100) in the PLC will be set to True.
Note that use of the quotes is optional, but is required to differentiate between
100.1 and 100.10

B.15 ListPLCs
Holds a list of all PLC names configured in the project file. This property is
read only.
Example

Dim arrayOfPLCs
Dim nUbound, nLbound
arrayOfPLCs = CXServer.ListPLCs
nLbound = LBound(arrayOfPLCs)
nUbound = UBound(arrayOfPLCs)
For Count = nLbound To nUbound

MsgBox arrayOfPLCs(Count)
Next

In this example, the list of PLC names in the project configured stored in
'arrayOfPLCs' and then each is displayed in a message box.

B.16 ListPoints
Holds a list of all point names configured in the project file or PLC. This
property is read only.
Example

Dim arrayOfPoints
Dim nUbound, nLbound
arrayOfPoints = CXServer.ListPoints(sPLC)
nLbound = LBound(arrayOfPoints)
nUbound = UBound(arrayOfPoints)

Note: These examples assume there is only 1 PLC in the CX-Server project file, or
that the 'SetDefaultPLC' function has been used to select the required PLC.
Refer to the 'SetDefaultPLC' function for details about using script with multiple
PLCs in the project.

IsBadQuality Appendix B CX-Server Communications Control

137

For Count = 1 To UBound(arrayOfPoints)
MsgBox arrayOfPoints (Count)

Next

In this example, the list of Points configured for the PLC name specified in text
point sPLC is stored in 'arrayOfPoints' and each displayed in a message box.
Example 2

arrayOfPoints = CXServer.ListPoints

If ListPoints is used without a parameter then points from all PLCs are
returned.

B.17 IsBadQuality
Checks whether a point is currently indicating "Bad Quality".
Example

Dim bBad
bBad = CXServer.IsBadQuality("MyPLC", "MyPoint")

B.18 ClockRead
Function that reads the PLC clock
Example

Dim NewDate
NewDate = CXServer.ClockRead("PLC1")
' dates can be manipulated via standard VBScript
methods (FormatDateTime, DatePart etc.)
TextBox1 = NewDate ' this uses a Microsoft Forms
Text Box to convert date to string
TextPoint1 = TextBox1 'this writes the date string to
a CX-Supervisor text point

B.19 ClockWrite
Function that sets the PLC clock. The expected format for the date is "dd/mm/
yyyy hh:mm:ss".
Example

Dim NewDate
'set time/date value here using standard VBScript
methods (Date, Time, Now, CDate etc.)
NewDate = Now ' This example sets the time to the
current PC time
CXServer.ClockWrite "PLC1", NewDate

B.20 RawFINS
This function enables raw FINS commands to be sent to a specified PLC. This
function is for advanced users familiar with the Omron FINS protocol only.
VBScript Example

Dim sFINS
Dim sResponse
sFINS = "0501"
sResponse = CXServer.RawFINS(sFins, sPLC)
txtFINSResponse = sResponse 'txtFINSResponse is a CX-
Supervisor point.

Note: IsBadQuality will return True in situations where the quality is unknown, e.g.
where no previous communications with a point has occurred.

Active Appendix B CX-Server Communications Control

138

B.21 Active
Returns the connection status of a specified PLC.
VBScript Example

bActive = CXServer.Active("MyPLC") ' bActive is a CX-
Supervisor point

In this example, the connected status would be read from 'MyPLC' and stored
in CX-Supervisor point 'bActive'. If 'MyPLC' is connected 'bActive' would be set
to True.

B.22 TCGetStatus
Return status data for the specified temperature controller.
Example

Dim bTCStatusResponse
bTCStatusResponse = CXServer.TCGetStatus("E5AK")
'Heating output is bTCStatusResponse(21)
'Cooling output is bTCStatusResponse(22)
'Alarm 1 output is bTCStatusResponse(23)
'Alarm 2 output is bTCStatusResponse(24)
'Alarm 3 output is bTCStatusResponse(25)
'Stopped status is bTCStatusResponse(28)
'Remote status is bTCStatusResponse(30)

In this example, the device status is being read from "E5AK" as an array of
bytes. The response from the temperature controller is stored as an array of
bytes in bTCStatusResponse.

B.23 TCRemoteLocal
The TCRemoteLocal command will execute the Remote/Local command for
the specified temperature controller:
Example - in this example, the "E5AK" device is being set to local mode:

'Set the device to local mode
CXServer.TCRemoteLocal "E5AK", 1

Example - in this example, the "E5AK" device is being set to remote mode:
'Set the device to remote mode
CXServer.TCRemoteLocal "E5AK", 0

B.24 SetDeviceAddress
This function can be used to set key elements of a device address (the
network number, node number, unit number and Ethernet IP address). The
numbers are in the range 0 to 255, with -1 being used to denote "ignore this
parameter". This function is for advanced users only.
Note: this method does not interpret or verify the data passed, and it is
possible to pass invalid data that will prevent a device communicating. Care
should be taken to ensure that all data passed is valid. This method should not
be used while a PLC is open and communicating.
Example:

NetworkNum = 1
NodeNum = 2
UnitNum = -1
iPAddress = "10.0.0.1"
bValid = CXServer.SetDeviceAddress("PLC1",
NetworkNum, NodeNum, UnitNum, IPAddress)

SetDeviceConfig Appendix B CX-Server Communications Control

139

B.25 SetDeviceConfig
This is a function that can be used to set any element of CX-Server device
configuration. All the data is passed in textual form. This function is for
advanced users only.

Example:
Device = "PLC1"
Section = "NET"
Entry = "IPADDR"
Setting = "10.0.0.1"
bValid = CXServer.SetDeviceConfig Device, Section,
Entry, Setting

Only the following Section, Entry and Setting parameter value combinations
are currently supported:

• Section = "ADDRESS", Entry = "DNA", Setting = "0"..Setting = "255" -
this can be used to set the network number

• Section = "ADDRESS", Entry = "DA1", Setting = "0"..Setting = "255" - this
can be used to set the node number

• Section = "ADDRESS", Entry = "UNIT", Setting = "0"..Setting = "255" -
this can be used to set the unit number

• Section = "ADDRESS", Entry = "IPADDR", Setting = "0.0.0.0"..Setting =
"255.255.255.255" - this can be used to set the Ethernet IP address

Other parameter values may work, but should only be used on Omron advice.

B.26 GetDeviceConfig
This is a function that can be used to read any element of the CX-Server
device configuration. All the data is passed (and received) in textual form. This
function is for advanced users only.
Example:

Dim Setting
Device = "PLC1"
Section = "NET"
Entry = "IPADDR"
Setting = CXServer.GetDeviceConfig Device, Section,
Entry

Currently supported parameter values are as described for the
SetDeviceConfig method.

Note: The return Boolean value, bValid, is set to True if no errors were detected.
However, this does not necessarily mean that all the parameters used were
valid or appropriate for the PLC being used.

Note: This method does not interpret or verify the data passed, and it is possible to
pass invalid data that will prevent a device communicating. Care should be
taken to ensure that all data passed is valid. This method should not be used
while a PLC is open and communicating.

Note: The return Boolean value, bValid, is set to True if no errors were detected.
However, this does not necessarily mean that all the parameters used were
valid or appropriate for the device being used.

UploadProgram Appendix B CX-Server Communications Control

140

B.27 UploadProgram
The UploadProgram function can be used to read a program from a PLC. The
program is read in binary form, and stored in a user-specified file. This function
should not be used at the same time as any other PLC communications. The
project and PLC will automatically be opened if required. This function is for
advanced users only.
Example:

Dim SourceFile
Dim DestinationFile
Sourcefile = ""
DestinationFile = "c:\test1.bin"
CXServer.UploadProgram "PLC1", SourceFile,
DestinationFile, 1, 0

The first parameter is the PLC name.
The second parameter is the source file name. To upload the current program
this should be an empty string, but may also be set to the name of a file in the
root directory of a memory card, e.g. "Example.obj".
The third parameter is the name of the local file to store the program. A '.bin'
file extention is typical for a binary file.
Note: The 4th and 5th parameters are reserved, and should always be 1 and 0
respectively

B.28 DownloadProgram
The DownloadProgram function can be used to write a program to a PLC. This
function should not be used at the same time as any other PLC
communications. The project and PLC will automatically be opened if required.
This function is for advanced users only.

Example:
bValid =CXServer.DownloadProgram "PLC1",
"c:\test2.bin", "", 1, 0

The first parameter is the PLC name.
The second parameter is the local source file name. A '.bin' file extention is
typical for a binary file.
To download the current program the third parameter should be an empty
string, but may also be set to the name of a file to download to the root
directory of a memory card, e.g. "Example.obj".

B.29 Protect
The Protect function can be used to protect (or remove protection from) PLC
program memory. This function should not be used at the same time as any
other PLC communications. The project and PLC will automatically be opened
if required. This function is for advanced users only.
Example 1 (sets protection for CS series PLC)

Dim SetProtection
Dim PasswordString
Dim PasswordNumber
EnableProtection = true

Note: Care should be taken with this function to ensure that the program written is
valid for the PLC to which it is downloaded.

Note: The 4th and 5th parameters are reserved, and should always be 1 and 0
respectively

LastErrorString Appendix B CX-Server Communications Control

141

PasswordString = "Password"
PasswordNumber = 0
CXServer.Protect "PLC1", EnableProtection,
PasswordString, PasswordNumber

Example 2 (unsets protection for C series PLC)
Dim SetProtection
Dim PasswordString
Dim PasswordNumber
EnableProtection = false
PasswordString = ""
PasswordNumber = 12345678
CXServer.Protect "PLC1", EnableProtection,
PasswordString, PasswordNumber

The parameters of this command are, in order:
• PLC - Name of PLC.
• EnableProtection - true to set password protection, false to unset it
• PasswordString - Password as a string. For CS series PLCs this should

be a string of up to 8 characters. For CV PLCs this should be a string of
up to 8 characters containing a hexadecimal number, e.g. "12345678". For
C series PLCs this should be a string of up to 4 characters containing a
hexadecimal number, e.g. "1234".

• PasswordNumber - currently this is only used for C and CV series PLCs,
and only when the password string is empty. In those circumstances it is
simply a number representing the value of the 4 or 8 digit password.
Please note that the password is entered in CX-Programmer as a
hexadecimal string (as with the PasswordString parameter above), and
that, for example, the value 1234 in decimal is the equivalent to "04d2" as
a hexadecimal password string.

Additional C Series PLC notes: For C series the PLC program needs code (the
first line of the application) in the PLC to enable password setting/release, and
this fixes the password value.

e.g. LD AR10.01
FUN49 0 0 #1234 (#1234 - password value in Hex)

When setting the password this value is used rather than the value passed -
i.e. the password string or number is ignored. The correct password must be
provided, however, when disabling the password protection.

B.30 LastErrorString
This property, which can be set as well as read, is a textual description of the
last error that occurred. If none have occurred, it is blank.
Example:

txtError = CXServer.LastErrorString
CXServer.LastErrorString = ""

LastErrorString Appendix B CX-Server Communications Control

142

Appendix C JScript Features

143

Appendix C
JScript Features

This appendix provides a summary of JScript features available for use with
the ExecuteJScript and ExecuteJScriptFile script functions. These features
are provided by the Windows Scripting Host, included by default with Windows
and installed by Internet Explorer.
For details of the latest versions and support contact Microsoft at http://
msdn.microsoft.com/scripting

Category Keyword / Feature

Array Handing Array
join, length, reverse, sort

Assignments Assign (=)
Compound Assign (OP=)

Booleans Boolean

Comments /*…*/ or //

Constants / Literals NaN
null
true, false
Infinity
undefined

Control flow break
continue
for
for..in
if…else
return
while

Dates and Time Date
getDate, getDay, getFullYear, getHours,
getMilliseconds, getMinutes, getMonth, getSeconds,
getTime, getTimezoneOffset, getYear,
getUTCDate, getUTCDay, getUTCFullYear,
getUTCHours, getUTCMilliseconds, getUTCMinutes,
getUTCMonth, getUTCSeconds,
setDate, setFullYear, setHours, setMilliseconds,
setMinutes, setMonth, setSeconds, setTime, setYear,
setUTCDate, setUTCFullYear, setUTCHours,
setUTCmillisecinds, setUTCMinutes, setUTCMonth,
setUTCSeconds,
toGMTString, toLocaleString, toUTCString, parse, UTC

Declarations function
new
this
var
with

Function Creation Function
arguments, length

Appendix C JScript Features

144

Global Methods Global
escape, unescape
eval
isFinite, isNaN
parseInt, parseFloat

Maths Math
abs, acos, asin, atan, atan2, ceil, cos, exp, floor, log,
max, min, pow, random, round, sin, sqrt, tan,
E, LN2, LN10, LOG2E, LOG10E, PI, SQRT1_2, SQRT2

Numbers Number
MAX_VALUE, MIN_VALUE
NaN
NEGATIVE_INFINITY, POSITIVE_INFINITY

Object Creation Object
new
constructor, prototype, toString, valueOf

Operators Addition(+), Subtraction (-)
Modulus arithmetic (%)
Multiplication (*), Division (/)
Negation (-)
Equality (==), Inequality (!=)
Less Than (<), Less Than or Equal To (<=)
Greater Than (>)
Greater Than or Equal To (>=)
Logical And (&&), Or (||), Not (!)
Bitwise And (&), Or (|), Not (~), Xor (^)
Bitwise Left Shift (<<), Shift Right (>>)
Unsigned Shift Right (>>>)
Conditional (?:)
Comma (,)
delete, typeof, void
Decrement (--), Increment (++)

Objects Array
Boolean
Date
Function
Global
Math
Number
Object
String

Strings String
charAt, charCodeAt, fromCharCode
indexOf, lastIndexOf
split
toLowerCase, toUpperCase
length

Category Keyword / Feature

Windows 2000, NT, Windows ME, Windows 98 and Windows 95 Appendix D Obsolete

145

Appendix D
Obsolete Features

This appendix provides a summary of features that are obsolete and have
been removed from the standard documentation. Details are included here to
assist maintaining old projects still using these features. These features
should not be used in development of new solutions as it is likely support for
the following features may and will be removed from the next or future
releases.

D.1 Windows 2000, NT, Windows ME, Windows 98 and Windows
95

This product will no longer install on these operating systems. It is
recommended to upgrade to a later Windows version.

D.2 Old project file formats
This product no longer supports loading of project files (.SCS and . PAG) from
old formats saved by SYSMAC-SCS.

D.3 Sleep
Description
Pause execution of a script for specified duration.
Syntax

Sleep (duration)

Remarks

Typical Example
Sleep (1000)

CX-Supervisor waits 1 second.

Argument Type Description

Duration - - - Number of milliseconds to wait before
continuing.

Note: The sleep statement should be used with caution, as some other parts of the
system may not be updated while a script is sleeping. It also uses
multithreading which means some tasks like PLC communication may occur in
parallel and behave unpredictably.

Note: In a well designed, truly event driven system use of the Sleep() statement
should never be required. Always consider if the statements after the Sleep
should be in their own script, executed when a Condition occurs.

Note: The Granularity (or intervals) differs between Operating Systems. In Windows
NT (and 2000) expiration is checked every 10ms, so 'Sleep(100)' actually
pauses for any time between 100.00 to 109.99 milliseconds depending on
when it was started. For Windows 98 (and ME) the granularity is 55ms so
'Sleep(100)' actually pauses for 110 (2 times 55) to 164.99 milliseconds (nearly
3 times 55). For this reason, Sleep statements can act differently on different
Operating Systems making the application OS dependant.

DDE Commands Appendix D Obsolete Features

146

D.4 DDE Commands
DDE as a means for exchanging data has now been obsolete for some years.
In fact for so long even its successor, OLE Automation is obsolete. DDE has
also proved to be a poor technology, suffering from unfixed memory leaks both
in the native Operating Systems, and tools like Microsoft Excel. This
technology has now been replaced and the CX-Supervisor Communications
Control should be used instead.
The following DDE script commands are obsolete.

D.4.1 DDEExecute
Syntax

returnstate = DDEExecute(channel, {command})

Remarks

Typical Example
channelname = DDEInitiate("Excel", "Sheet1.xls")
DDEExecute(channelname,
{[OPEN("C:\EXCEL\WORK\SHEET2.XLS")]})

The file 'SHEET2.XLS' within path 'C:\EXCEL\WORK' is opened in Microsoft
Excel, as specified by the Integer point 'channelname'. The file 'SHEET1.XLS'
is already open in Microsoft Excel

D.4.2 DDEInitiate
Syntax

channel = DDEInitiate("server", topic")

Remarks

Note: Sleep should never be used as a delay for timing processes, for the following
reasons:

• The actual time delay depends on the OS as described above
• There is always an error of 0 to 1 granularity, depending on when the

action is started.
• The frequency can not be guaranteed as the OS may be busy, or handling

other processes.

Argument Type Description

returnstate Bool Returnstate is '1' if the function is successful, or
'0' otherwise.

channel Integer
point

This is an integer point which contains the
return value of the DDEInitiate() command.
Both server and topic parameters applied to the
channel based on the DDEInitiate() command
must be open or an error is reported.

command String This is a command as recognised by the server
application specified within the channel.

Argument Type Description

channel Integer
point

This is an integer point which contains the
return value of the DDEInitiate() command.

DDE Commands Appendix D Obsolete Features

147

Typical Example
channelname = DDEInitiate("Excel", "Sheet1.xls")

The Integer point 'channelname' is provided with a DDE link to the application
Microsoft Excel which is run by the executable filename 'EXCEL.EXE', and to
the file 'SHEET1.XLS' within that application.

D.4.3 DDEOpenLinks
Syntax

returnstate = DDEOpenLinks(channel)

Remarks

Typical Example
channelname = DDEInitiate("Excel", "Sheet1.xls")
DDEOpenLinks(channelname)

The DDEOpenLinks command enables points which have been configured to
communicate via DDE to begin data transfer. Data transfer between CX-
Supervisor and the application Microsoft Excel is automatically maintained
until the channel is closed either by Microsoft Excel or by the command
DDETerminate() using the Integer point 'channelname', or the command
DDETerminateAll().

D.4.4 DDEPoke
Syntax

server String This contains the application that supports DDE
as a DDE server. Typically, this is the name of
the applications' *.EXE executable file without
the filename extension. At runtime, the server
application must be open or a value cannot be
returned and an error is reported.

topic String This contains the name of the topic recognised
by the server application. Typically, a topic is a
document within an application. At runtime, the
topic must be open or a value cannot be
returned and an error is reported.
The topic may be left empty, which enables
documents to open remotely prior to making a
specified connection. The topic name 'System'
may be used to find out which other topics
within the server application are available.
However, this is dependant on the server
application supporting this topic.

Argument Type Description

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

channel Integer
point

This is an integer point which contains the
return value of the DDEInitiate() command.
Both server and topic parameters applied to the
channel in the DDEInitiate() command must be
open or an error is reported.

DDE Commands Appendix D Obsolete Features

148

returnstate = DDEPoke(channel, "item", pointname)

Remarks

Typical Example
channelname = DDEInitiate("Excel", "Sheet1.xls")
DDEPoke(channelname, "R2C5", data)

The content of point 'data' is sent to row 2, column 5 of 'SHEET1.XLS' in the
Microsoft application. The Microsoft Excel application, and 'SHEET1.XLS' are
specified by Integer point 'channelname'.

D.4.5 DDERequest
Syntax

pointname = DDERequest(channel, "item")

Remarks

Typical Example
channelname = DDEInitiate("Excel", "Sheet1.xls")
cellref = DDERequest("channelname", "R2C5")

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

channel Integer
point

This is an integer point which contains the
return value of the DDEInitiate() command.
Both server and topic parameters applied to the
in the DDEInitiate() command must be open or
an error is reported.

item string This is an item as recognised by the server
application. For instance, a cell is an item
within a spreadsheet application. Likewise, a
page is an item for a word processing
application. It is wholly dependant on the
server application.

pointname point This is a point whose attributes must include a
DDE Access of 'Read/Only' or 'Read/Write'.
The contents of this point are assigned to the
server application.

Argument Type Description

channel Integer
point

This is an integer point which contains the
return value of the DDEInitiate() command.
Both server and topic parameters applied to the
channel in the DDEInitiate() command must be
open or an error is reported.

item string This is an item as recognised by the server
application. For instance, a cell is an item
within a spreadsheet application. Likewise, a
page is an item for a word processing
application. It is wholly dependent on the
server application.

pointname point This is a point whose attributes must include a
DDE Access of 'Read/Write'.

DDE Commands Appendix D Obsolete Features

149

The point 'cellref' is filled from a specific item, row 2, column 5 from
'SHEET1.XLS' from the Microsoft Excel application, specified by the Integer
point 'channelname'.

D.4.6 DDETerminate
Syntax

returnstate = DDETerminate(channel)

Remarks

Typical Example
DDETerminate(channelname)

The server and topic specified by Integer point 'channelname' is closed.

D.4.7 DDETerminateAll
Syntax

returnstate = DDETerminateAll()

Remarks

Typical Example
DDETerminateAll()

All previously initiated DDE links are closed.

D.4.8 EnableDDE
Syntax

returnstate = EnableDDE(pointname)

Remarks

Typical Examples
EnableDDE(result)

DDE functions are enabled based on the value of point 'result'. If 'point' is
'TRUE', then DDE is enabled, if 'point' is 'FALSE', then DDE is disabled.

EnableDDE(TRUE)

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

channel Integer
point

This is an integer point which contains the
return value of the DDEInitiate() command.
Both server and topic parameters applied to the
channel in the DDEInitiate() command must be
open or an error is reported.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Pointname bool
point

A Boolean point that holds the required enable/
disable state

Graph Commands Appendix D Obsolete Features

150

DDE functions can also be enabled directly without using a point to hold the
desired status.

D.5 Graph Commands

D.5.1 ClearGraph
Syntax

returnstate = ClearGraph("graphid", "pagename")

Remarks

Typical Examples
ClearGraph("Graph_1", "TestPage1")

The trend or scatter graph on 'TestPage1' with the identifier 'Graph_1' has its
data cleared.

ClearGraph ("Graph_2")

The trend or scatter graph on the current page, with the identifier 'Graph_2',
has its data cleared.

D.5.2 StartGraph
Syntax
returnstate = StartGraph("graphid", "pagename")
Remarks

Typical Examples
StartGraph("Graph_1", "TestPage1")

The trend or scatter graph on 'TestPage1' with the identifier 'Graph_1' has its
data logging started.

StartGraph("Graph_2")

The trend or scatter graph on the current page with the identifier 'Graph_2' has
its data logging started.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
cleared.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
started.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Note: This command is provided for compatibility with SCS v2.0 applications. For
newer applications the data logging facilities should be used in preference.

Graph Commands Appendix D Obsolete Features

151

D.5.3 StopGraph
Syntax

returnstate = StopGraph("graphid", "pagename")

Remarks

Typical Examples
StopGraph("Graph_1", "TestPage1")

The trend or scatter graph on 'TestPage1' with the identifier 'Graph_1' has its
data logging stopped.

StopGraph("Graph_2")

The trend or scatter graph on the current page with the identifier 'Graph_2' has
its data logging stopped.

D.5.4 EditGraph
Syntax

returnstate = EditGraph("graphid")

Remarks

Typical Example
EditGraph("Graph_1")

The Edit Graph dialog is displayed offering options to view historical data for
the chosen trend graph.

• Display Data loads the currently selected data sample i.e. either the
current screen data or a snapshot of the data, into the trend graph.

• Snapshot stores the current data buffer associated with the trend graph.
The snapshot is given a time stamped default description.

• Description provides the ability to change the description associated with
the snapshot.

• Import Data provides the ability to load in a previously saved trend graph
file.

• Export Data provides the ability to store a snapshot to a file, either in
internal CX-Supervisor format, or as a text file that can be imported into
other applications.

• Delete removes the currently selected snapshot.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
stopped.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
edited.

Graph Commands Appendix D Obsolete Features

152

D.5.5 SaveGraph
Syntax

returnstate = SaveGraph("graphid")

Remarks

Typical Examples
SaveGraph("Graph_1", "TestPage1")

The trend graph on the page 'TestPage' with the identifier 'Graph_1' has its
data saved to disc.

SaveGraph("Graph_2")

The trend graph on the current page with the identifier 'Graph_2' has its data
saved to disc.

D.5.6 Snapshot
Syntax

returnstate = Snapshot("graphid", "pagename")

Remarks

Typical Examples
Snapshot("Graph_1", "TestPage1")

The current data in trend graph 'Graph1' on 'TestPage1', is stored and is able
to be viewed via the EditGraph command.

Snapshot("Graph_2")

The current data in trend graph 'Graph1' on the current page, is stored and is
able to be viewed via the EditGraph command.

Note: This command is provided for compatibility with SCS v2.0 applications.
For newer applications the data logging facilities should be used in
preference.

Note: This command can only be used if the trend is set to log to a file.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
saved.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to
have the snapshot.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Note: This command is provided for compatibility with SCS v2.0 applications. For
newer applications the data logging facilities should be used in preference.

Graph Commands Appendix D Obsolete Features

153

D.5.7 GetPointValue
Syntax

returnpoint = GetPointValue(pointname,offset)

Remarks

Typical Example
pointname = 10;
returnpoint = GetPointValue(pointname,0)

The point 'returnpoint' contains the value 10. The offset is added to any offset
specified for pointname. For example:

returnpoint = GetPointValue(a[10],10)

Causes the 21st element (offsets begin at zero) of array 'a' to be retrieved.

D.5.8 GetSpoolCount
Syntax

returnstate = GetSpoolCount()

Remarks

Typical Example
NumberMessages = GetSpoolCount()

The count of the number of messages (typically printed alarms) that are
queued up waiting to be sent to the CX-Supervisor Alarm/Message printer is
returned.

D.5.9 SetPrinterConfig
Syntax

returnstate StePrintConfig(Driver, Device, Port)

Remarks

Argument Type Description

pointname point This is the name of the point whose contents
are to be returned.

offset integer This specifies the offset into an array point. 0 if
the point is not an array point.

returnpoint point Point that contains the return value. The type
of data returned is dependant on the pointname
specified.

Note: It is often simpler to access an array element directly, e.g. returnpoint = a[20].

Argument Type Description

returnstate int Number of messages queued up waiting to be
printed on Alarm/Message printer.

Argument Type Description

returnstate Bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Driver String Name of printer device (e.g. "Epson9" for 9 pin
Epson printers.

Device String Name of specific device (e.g. "Epson FX-870").
This is optional.

Graph Commands Appendix D Obsolete Features

154

Typical Examples
SetPrinterConfig("SCSPRN", "", "LPT1:")

This uses standard CX-Supervisor line print driver.
SetPrinterConfig("", "", "")

This uses default Windows printer driver.
SetPrinterConfig("Epson9", "", "LPT2:")

This uses Epson printer driver, attached to LPT2.
SetPrinterConfig(DriverNamePoint, DeviceNamePoint,
PrintNamePoint)

This uses text points.
Terminator = FormatText("%c%c",13,10)

Character 10 is 'lf' (newline), character 13 is cr (carriage return).
SetPrinterConfig("Epson9","","LPT1:",Terminator)

Port String Name of port or file(e.g. "LPT1.").

Line Terminator String Optional. Sets terminator (e.g. cr) to be added
to end of each printed line.

Argument Type Description

Appendix E Glossary of Terms

155

Appendix E
Glossary of Terms

ADO ADO stands for Active Data Objects and is data access
technology which uses OLE-DB to access data sources
in a uniform way e.g. MS-Access databases, MS-Excel
spreadsheets and Comma Separated Variable files.

AND A logic operator used to interrogate Boolean type points.
AND returns 'TRUE' if all arguments are 'TRUE'. An
example of AND is that if a is a statement and b is a
statement, AND returns 'TRUE' if both a and b are
'TRUE'. If one or both statements return 'FALSE' then
AND returns 'FALSE'.

Application A software program that accomplishes a specific task.
Examples of applications are CX-Supervisor, CX-Server
and Microsoft Excel. CX-Supervisor and its development
environment allows the creation and testing of new
applications through a Graphical User Interface (GUI).

Arguments Words, phrases, or numbers that can be entered on the
same line as a command or statement to expand or
modify the command or statement within the CX-
Supervisor script language. The command acts on the
argument. In essence the command is a verb, and the
argument is the object of the verb. An example of an
argument in CX-Supervisor is
"DDETerminate(channel)" where DDETerminate is
a command within the script language, and channel is
the argument upon which the command will act.

ASCII An old standard, defining a set of characters. Officially
using only 7 bits allows definitions for only 127
characters, and does not include any accented
characters.

Bitmap The representation of an image stored in a computer's
memory. Each picture element (pixel) is represented by
bits stored in the memory. In CX-Supervisor a bitmap
image can be installed as a single object.

Boolean type A type of point where the value of the point can be one of
two states. Essentially the two states are '0' and '1', but
these states can be assigned a meaningful designation.
Examples are:

COM COM is a Microsoft technology that allows components
used to interact.

State Example Example Example Example

0 OFF FALSE OUT CLOSED

1 ON TRUE IN OPEN

Appendix E Glossary of Terms

156

Communications
Driver

The relevant communications management system for
OMRON PLCs in conjunction with Microsoft Windows,
providing facilities for other SYSMAC software to
maintain PLC device and address information and to
communicate with OMRON PLCs and their supported
network types.

Constant Within CX-Supervisor, a constant is a point within the
script language that takes only one specific value.

Control Object In CX-Supervisor, a control object is applied in the
development environment and can be a pushbutton, a
toggle button, a slider, a trend graph, a rotational gauge
or a linear gauge. Essentially a control object can be a
complex graphic object consisting of a number of
primitive graphic objects, which provides user interaction.

CX-Server An advanced communications management system for
OMRON PLCs providing facilities for software to
maintain PLC device and address information and to
communicate with OMRON PLCs and their supported
network types. CX-Server supports CS-Series PLCs.

Database
connection

A Database connection (or Connection for short)
contains the details used to access a data source. This
can either be via Data Source Name (DSN), filename or
directory.

Database
Connection Level

A Database Connection Level is a string which
determines what level in the database tree hierarchy is to
be operated on. Some examples are listed below:

Database
Recordset

A Database recordset (or Recordset for short) is a set of
records. This could either be an actual Table in the
database, or a table that has been generated as a
consequence of running a Query.

Database Schema A Database Schema (or Schema for short) obtains
database schema information from a Provider.

Database Server
Query

A Database Server Query (or Server Query for short) is a
query that is stored in the actual Database. They are
pre-defined and added by the database designer which
means they are 'fixed' for the duration of a project.
Server Queries may have pre-defined 'Parameters',
which allow criteria to be passed to the query at runtime
e.g. values to filter, allowing one query to be used to
produce different results. Each pre-defined parameter
must have a Parameter Association defined. Because
these queries are stored in a compiled and tested form
they are more efficient and therefore preferential to
running a SQL Query.

"Northwind"
"CSV.Result"
"Northwind.Order Details.OrderID"
"Invoice.Data Types"

Connectionlevel
Recordset level
Field level
Schema level

Appendix E Glossary of Terms

157

Database SQL
Query

A Database SQL Query (or SQL Query for short) is
interpreted dynamically at runtime. The SQL Text can be
modified at runtime, enabling different Queries to be run
for varying situations however, the SQL Text has to be
compiled on the fly every time it is executed and
consequently is less efficient than a Server Query.

DBCS DBCS stands for Double Byte Character Set and is a
Microsoft extension of ASCII which uses 2 bytes (16 bits)
to define character codes. With this larger range it can
include accented characters, extended ASCII characters,
Nordic characters and symbols.

DCOM DCOM is a distributed version of COM that allows
components on different PCs to interact over a network.

DDE Dynamic Data Exchange. A channel through which
correctly prepared programs can actively exchange data
and controls other applications within Microsoft
Windows. DDE technology was notoriously unstable and
was replaced with OLE technology.
See also Item, Server, server application and Topic.

Development
Environment

SCADA applications are created and tested using the
development environment within CX-Supervisor. On
completion, the finished application can be delivered as a
final customer application to be run by the run-time
environment.

DLL Dynamic Link Library. A program file that although
cannot be run stand-alone as an executable, can be
utilised by one or more applications or programs as a
common service. DLL files have a *.DLL extension.
DLL's comprise a number of stand-alone functions. In
CX-Supervisor, a DLL containing icons can be accessed
to represent the display part of an OLE object. One such
DLL, 'MORICONS.DLL', is provided in the standard
Microsoft Windows installation.

Download A recipe is downloaded during runtime. This process
involves identifying the appropriate recipe and executing
the validation code, if any exists. The download is
complete when each ingredient has set its point to the
target value.

Executable A file that contains programs or commands of an
application that can be executed by a user or another
application. Executable files have a *.EXE file extension.
CX-Supervisor provides two executable files, one for the
development environment (CXSUPERVISORDEV.EXE),
and one for the run-time environment (SCS.EXE).

Expressions In the CX-Supervisor script language, expressions are a
construct for computing a value from one or more
operands. For instance, in the example "lift =
height + rate", the expression is "height + rate"
where the result yielded from the expression is used for
the value of "lift".

Appendix E Glossary of Terms

158

Outside of the script language, expressions consisting of
operators and operands can be used to control objects,
through actions.

Field association A field association enables a link to be made between a
CX-Supervisor Point and a particular field (i.e. column)
within a recordset.

Graphic Object In CX-Supervisor, a graphic object is created in the
development environment, and can be a line, an arc, a
polygon (including a square and rectangle), a round
rectangle, an ellipse (including a circle), or a polyline. A
complex object can exist as a combination of two or more
graphic objects.

GUI Graphical User Interface. Part of a program that
interacts with the user and takes full advantage of the
graphics displays of computers. A GUI employs pull-
down menus and dialog boxes for ease of use. Like all
Microsoft Windows based applications, CX-Supervisor
has a GUI.

I/O type Input/Output type. An attribute of a point that defines the
origin and destination of the data for that point. The data
for a point can originate (be input from) and is destined
(is output to) to the internal computer memory or PLC.

Icon Pictorial representations of computer resources and
functions. The CX-Supervisor development environment
and run-time environment are run from icons.

Ingredient Each recipe consists of at least one ingredient. Each
ingredient must be related to an existing point.

Integer type A type of point where the value of the point can only be a
whole positive or negative number.

Item Within the CX-Supervisor script language, Item is a
generic term for a point, OPC item or Temperature
Controller item.

JScript A Java style scripting language supported by Microsoft's
Windows Scripting Host.

JVM Java Virtual Machine.

Microsoft Excel A spreadsheet application.

Microsoft Windows A windowing environment that is noted for its GUI, and
for features such as multiple typefaces, desk accessories
(such as a clock, calculator, calendar and notepad), and
the capability of moving text and graphics from one
application to another via a clipboard.

CX-Supervisor will run only under Microsoft Windows.
DDE functions communicating with other applications
supported by CX-Supervisor use Microsoft Windows as a
basis.

Microsoft Word for
Windows

A word processing application.

Appendix E Glossary of Terms

159

Nesting To incorporate one or more IF THEN ELSE/ELSEIF
ENDIF statements inside a structure of the same kind.

Network 1 - Part of the PLC configuration, based on the device
type. The number of Networks available is dependant on
the device type.
2 - A number of computers linked together with a central
processing point known as a Server which is accessible
to all computers. Networks affect CX-Supervisor in that
further Network associated options are available if the
computer is Network connected.

Non-Volatile A point that is designated as 'non-volatile' is a point
whose value is saved on disk and automatically reloaded
when CX-Supervisor resumes execution.

NOT A logic operator used to interrogate Boolean type points
which produces the Boolean inverse of the supplied
argument. An example of NOT is that if a is a statement
and is 'FALSE', then NOT returns 'TRUE'. If a is a
statement and is 'TRUE', then NOT returns 'FALSE'.

Object In CX-Supervisor, an object can be text, graphics, a
control, a bitmap, or ActiveX object as created in the
development environment. A complex object can exist
as a combination of two or more objects of any of the
above types. Specifically, graphical objects can be
categorised as a line, an arc, a polygon (including a
square and rectangle), a round rectangle, an ellipse
(including a circle), or a polyline. A control is essentially
a complex graphic object and is specifically either a
pushbutton, a toggle button, a slider, a trend graph, a
rotational gauge or a linear gauge.

OLE-DB OLE-DB is the underlying database technology, on which
ADO relies. OLE-BD is designed to be the successor to
ODBC.

Operand The term used for constants or point variables.

Operator A symbol used as a function, with infix syntax if it has two
arguments (e.g. "+") or prefix syntax if it has only one
argument (e.g. NOT). The CX-Supervisor script
language uses operators for built-in functions such as
arithmetic and logic.

OR A logic operator used to interrogate Boolean type points.
OR returns 'TRUE' if any of the supplied arguments are
'TRUE'. An example of OR is that if a is a statement and
b is a statement, OR will return 'TRUE' if either a and b
are 'TRUE'. If both statements return 'FALSE' then OR
will return 'FALSE'.

Pages The combination and manipulation of pages containing
objects within projects forms the basis of CX-Supervisor.
More than one page can exist for each project. The
pages in a project provide the visual aspect of CX-
Supervisor corresponding to a display with the objects
contained in each page providing a graphical
representation of the system being monitored.

Appendix E Glossary of Terms

160

Parameter
Association

A Parameter Association enables values, either constant
or stored in a point, to be passed to a Server Query.

Pixel A single displayable point on the screen from which a
displayed image is constructed. The screen resolution of
the computer's Visual Display Unit (VDU) is defined by
the number of pixels across and the number of pixels
down (e.g. 1024 x 768).

See also SVGA mode and VGA mode.

PLC Programmable Logic Controller.

Point variable A point within the CX-Supervisor script language that
stores a value or string assigned to that point.

Point A point is used to hold a value of a predefined type -
Boolean, Integer, Text, etc. The contents of a point may
be controlled by an object or I/O mechanism such as
PLC communication. The contents of a point may
control the action or appearance of an object, or be used
for output via an I/O mechanism.

See also Boolean type, Integer type, point variable, Real
type and Text type.

Project A CX-Supervisor application will consist of one or a
number of pages linked together. The pages may
contain passive or active graphics, text or animations,
and may be grouped together logically to form a project.
A project may consist of many pages, or simply a single
page. Projects may be built and tested within the CX-
Supervisor development environment, and run stand-
alone under the CX-Supervisor run-time environment.

Only one project at a time may be open for editing within
the CX-Supervisor development environment.

Real type A type of point where the value of the point can be any
number, including those containing a decimal point.

Recipe A recipe is a set of pre-defined steps used to perform a
particular task. A CX-Supervisor project may contain
zero or more number of recipes. Recipes are defined in
the development environment and executed, or
downloaded, in the run-time environment.

Run-Time
Environment

SCADA applications are run using the run-time
environment of CX-Supervisor, following creation of the
application in the CX-Supervisor development
environment.

SCADA Supervisory Control and Data Acquisition.

Server A Server is the central processing point of a Network that
is accessible to all computers. Networks affect CX-
Supervisor in that further associated options are
available if the computer Network is connected.

Server Application An application that can be used to view or interact with,
whilst currently within CX-Supervisor.

Appendix E Glossary of Terms

161

Statement Within the CX-Supervisor script language, a statement is
a command understood by the run-time environment.
Statements are constructed of commands and
arguments, which when combined, help to formulate a
finished application to be used in the run-time
environment.

String The contents of a Text type point that can only contain
literal alphanumeric characters. A string starts following
an opening quotation mark, and ends before a closing
question mark; in the example "name = "spot"", the point
"name" holds the string spot.

SVGA mode A mode of video display that provides 800 600 pixel
resolution (or higher) with 16 or more colours and is
supported on Super Video Graphics Adapter systems.

CX-Supervisor A SCADA software application which creates and
maintains graphical user interfaces and communicates
with PLCs and other I/O mechanisms.

Target Value An ingredient must specify a target value for its related
point. This is the value to which the point will be set in
runtime when the recipe is downloaded.

Taskbar An integral part of Microsoft Windows which allows
Microsoft Windows based applications to be started. CX-
Supervisor is run from the Taskbar.

Text Object In CX-Supervisor, a text object is a string on a page.
Attributes such as typeface, point size, embolden,
italicise, underline, left justify, flush right, and centre can
be applied to enhance its presentation.

Text Type A type of point that holds a string.

Unicode A Multi-Byte Character Set, which not only includes
European Characters like DBCS, but can also include
global support including for Japanese, Chinese and
Cyrillic fonts. However, Unicode is not supported on all
Windows platforms.

Validation Code Recipe validation code is CX-Supervisor script language
which is used to check point values before downloading
a recipe.

VBScript A Visual Basic style scripting language supported by
Microsoft's Windows Scripting Host.

VGA mode A mode of video display that provides 640 480 pixel
resolution with 16 colours and is supported on Video
Graphics Adapter systems.

Windows Desktop An integral part of Microsoft Windows which allows
Microsoft Windows based applications to be started from
icons and for all applications to be organised. CX-
Supervisor can be run from Windows Desktop.

Windows Scripting
Host

A scripting engine supplied by Microsoft to run VBScript
or JScript. See http://msdn.microsoft.com/scripting

Appendix E Glossary of Terms

162

Wizard Wizards are dialogs used by the CX-Supervisor
development environment to take the user through
complex operations in a simplified step-by-step process.

 Revision history

163

Revision history
A manual revision code appears as a suffix to the catalog number on the front
cover of the manual.

The following table lists the changes made to the manual during each revision.
The page numbers of a revision refer to the previous version.

Cat. No. W09E-EN-04

Revision
code

Date Revised content

01 Sept. 2010 First version in the standard Omron format.

02 June 2011 Updated for CX-Supervisor 3.2 release.

03 March 2017 Updated for CX-Supervisor 3.3 release.

04 Oct. 2017 Updated for CX-Supervisor 3.4 release.

 Revision history

164

Cat. No. I55E-EN-01

Motion Control Unit

Programmable Controller
SYSMAC CJ-series
CJ1W-MCH72

OPERATION MANUAL

Cat. No. W09E-EN-04 Note: Specifications subject to change without notice.

Authorized Distributor:

Printed in Europe

C
at. N

o. I55E-EN
-01

C
J1W

-M
C

H
72 P

rogram
m

able C
ontroller S

Y
S

M
A

C
 C

J-series M
otion C

ontrol U
nit

O
PER

ATIO
N

 M
A

N
U

A
L

	W09E-EN-04 Front cover
	TEMP_W09E-EN-04
	Notice
	Trademarks and copyrights
	Copyright

	Introduction
	Expressions
	Scripts
	3-1 Object
	3-2 Page
	3-3 Project

	CX-Supervisor Script Language
	4-1 Points
	4-1-1 Basic Point Assignment
	4-1-2 Further Point Assignment

	4-2 Logic and Arithmetic
	4-2-1 Arithmetic Operators
	4-2-2 Bitwise Operators
	4-2-3 Logical Operators
	4-2-4 Relational Operators

	4-3 Control Statements
	4-3-1 Simple Conditional Statements
	4-3-2 Nested Conditional Statements
	4-3-3 Case Select
	4-3-4 FOR... NEXT Loop
	4-3-5 DO WHILE/UNTIL Loop

	4-4 Subroutines
	4-4-1 Call
	4-4-2 Return

	4-5 Punctuation
	4-5-1 Command String Delimiters
	4-5-2 Indentation
	4-5-3 Multiple Commands
	4-5-4 Parenthesis
	4-5-5 Quotation Marks
	4-5-6 Remarks

	4-6 Indirection within Script Commands and Expressions
	4-7 Point Arrays within Script Commands and Expressions
	4-8 Using Aliases

	VBScript Language Reference
	5-1 List of Features:

	Functions and Methods
	6-1 Object Commands
	6-1-1 Current Object
	6-1-2 Other Objects
	6-1-3 Blink
	6-1-4 Colour
	6-1-5 Disable
	6-1-6 Height
	6-1-7 Horizontal Fill
	6-1-8 Move
	6-1-9 Rotate
	6-1-10 Vertical Fill
	6-1-11 Visible
	6-1-12 Width

	6-2 Page Commands
	6-2-1 Close Page

	6-3 General Commands
	6-3-1 Exponential
	6-3-2 PlayOLE
	6-3-3 DisplayPicture
	6-3-4 PlaySound
	6-3-5 Rand
	6-3-6 RunApplication
	6-3-7 RunHelp
	6-3-8 SetLanguage
	6-3-9 SetNYLEDDescription
	6-3-10 GetPerformanceInfo
	6-3-11 ShutDown

	6-4 Communications Commands
	6-4-1 CloseComponent
	6-4-2 EnableOLE
	6-4-3 EnablePLC
	6-4-4 LaunchTroubleshooter
	6-4-5 OpenComponent

	6-5 Point Commands
	6-5-1 CancelForce
	6-5-2 CopyArray
	6-5-3 DisableGroup
	6-5-4 DisablePoint
	6-5-5 EditPoint
	6-5-6 EnableGroup
	6-5-7 EnablePoint
	6-5-8 Force
	6-5-9 ForceReset
	6-5-10 ForceSet
	6-5-11 GetBit
	6-5-12 InitialiseArray
	6-5-13 InputPoint
	6-5-14 OutputPoint
	6-5-15 PointExists
	6-5-16 SetBit

	6-6 PLC Commands
	6-6-1 ClosePLC
	6-6-2 DownloadPLCProgram
	6-6-3 GetPLCMode
	6-6-4 OpenPLC
	6-6-5 PLCCommsFailed
	6-6-6 PLCMonitor
	6-6-7 SetPLCMode
	6-6-8 SetPLCPhoneNumber
	6-6-9 UploadPLCProgram

	6-7 Temperature Controller Commands
	6-7-1 TCAutoTune
	6-7-2 TCBackupMode
	6-7-3 TCGetStatusParameter
	6-7-4 TCRemoteLocal
	6-7-5 TCRequestStatus
	6-7-6 TCRspLsp
	6-7-7 TCRunStop
	6-7-8 TCSaveData
	6-7-9 TCSettingLevel1
	6-7-10 TCReset

	6-8 Alarm Commands
	6-8-1 AcknowledgeAlarm
	6-8-2 AcknowledgeAllAlarms
	6-8-3 AcknowledgeLatestAlarm
	6-8-4 ClearAlarmHistory
	6-8-5 CloseAlarmHistory
	6-8-6 CloseAlarmStatus
	6-8-7 DisplayAlarmHistory
	6-8-8 DisplayAlarmStatus
	6-8-9 EnableAlarms
	6-8-10 IsAlarmAcknowledged
	6-8-11 IsAlarmActive

	6-9 File Commands
	6-9-1 CloseFile
	6-9-2 CopyFile
	6-9-3 DeleteFile
	6-9-4 EditFile
	6-9-5 MoveFile
	6-9-6 OpenFile
	6-9-7 PrintFile
	6-9-8 Read
	6-9-9 ReadMessage
	6-9-10 SelectFile
	6-9-11 Write
	6-9-12 WriteMessage

	6-10 Recipe Commands
	6-10-1 DisplayRecipes
	6-10-2 DownloadRecipe
	6-10-3 UploadRecipe

	6-11 Report Commands
	6-11-1 GenerateReport
	6-11-2 PrintReport
	6-11-3 ViewReport

	6-12 Text Commands
	6-12-1 BCD
	6-12-2 Bin
	6-12-3 Chr
	6-12-4 FormatText
	6-12-5 GetTextLength
	6-12-6 Hex
	6-12-7 Left
	6-12-8 Message
	6-12-9 Mid
	6-12-10 PrintMessage
	6-12-11 Right
	6-12-12 TextToValue
	6-12-13 ValueToText

	6-13 Event/Error Commands
	6-13-1 ClearErrorLog
	6-13-2 CloseErrorLog
	6-13-3 DisplayErrorLog
	6-13-4 EnableErrorLogging
	6-13-5 LogError
	6-13-6 LogEvent

	6-14 Printer Commands
	6-14-1 ClearSpoolQueue
	6-14-2 EnablePrinting
	6-14-3 PrintActivePage
	6-14-4 PrintPage
	6-14-5 PrintScreen
	6-14-6 PrintSpoolQueue

	6-15 Security Commands
	6-15-1 Login
	6-15-2 Logout
	6-15-3 SetupUsers
	6-15-4 ChangeUserPassword

	6-16 Data Logging Commands
	6-16-1 AuditPoint
	6-16-2 ClearLogFile
	6-16-3 CloseLogFile
	6-16-4 CloseLogView
	6-16-5 ExportAndViewLog
	6-16-6 ExportLog
	6-16-7 OpenLogFile
	6-16-8 OpenLogView
	6-16-9 StartAuditTrail
	6-16-10 StopAuditTrail
	6-16-11 StartLogging
	6-16-12 StopLogging

	6-17 Database Commands
	6-17-1 DBAddNew
	6-17-2 DBClose
	6-17-3 DBDelete
	6-17-4 DBExecute
	6-17-5 DBGetLastError
	6-17-6 DBMove
	6-17-7 DBOpen
	6-17-8 DBProperty
	6-17-9 DBRead
	6-17-10 DBSchema
	6-17-11 DBState
	6-17-12 DBSupports
	6-17-13 DBUpdate
	6-17-14 DBWrite

	6-18 Serial Port Functions
	6-18-1 InputCOMPort
	6-18-2 OutputCOMPort
	6-18-3 CloseCOMPort
	6-18-4 OpenCOMPort
	6-18-5 SetupCOMPort

	6-19 ActiveX Functions
	6-19-1 GetProperty
	6-19-2 PutProperty
	6-19-3 Execute
	6-19-4 ExecuteVBScript
	6-19-5 ExecuteJScript
	6-19-6 ExecuteVBScriptFile
	6-19-7 ExecuteJScriptFile
	6-19-8 GenerateEvent

	Script Example
	7-1 Balloon Script

	Colour Palette
	OPC Communications Control
	A.1 Component Properties
	A.2 Script Interface
	A.3 Functions
	A.3.1 Value
	A.3.2 Read
	A.3.3 Write

	CX-Server Communications Control
	B.1 Functions
	B.2 Value
	B.3 Values
	B.4 SetDefaultPLC
	B.5 OpenPLC
	B.6 ClosePLC
	B.7 Read
	B.8 Write
	B.9 ReadArea
	B.10 WriteArea
	B.11 RunMode
	B.12 TypeName
	B.13 IsPointValid
	B.14 PLC Memory Functions
	B.15 ListPLCs
	B.16 ListPoints
	B.17 IsBadQuality
	B.18 ClockRead
	B.19 ClockWrite
	B.20 RawFINS
	B.21 Active
	B.22 TCGetStatus
	B.23 TCRemoteLocal
	B.24 SetDeviceAddress
	B.25 SetDeviceConfig
	B.26 GetDeviceConfig
	B.27 UploadProgram
	B.28 DownloadProgram
	B.29 Protect
	B.30 LastErrorString

	JScript Features
	Obsolete Features
	D.1 Windows 2000, NT, Windows ME, Windows 98 and Windows 95
	D.2 Old project file formats
	D.4 DDE Commands
	D.4.1 DDEExecute
	D.4.2 DDEInitiate
	D.4.3 DDEOpenLinks
	D.4.4 DDEPoke
	D.4.5 DDERequest
	D.4.6 DDETerminate
	D.4.7 DDETerminateAll
	D.4.8 EnableDDE

	D.5 Graph Commands
	D.5.1 ClearGraph
	D.5.2 StartGraph
	D.5.3 StopGraph
	D.5.4 EditGraph
	D.5.5 SaveGraph
	D.5.6 Snapshot
	D.5.7 GetPointValue
	D.5.8 GetSpoolCount
	D.5.9 SetPrinterConfig

	Glossary of Terms
	Revision history

	W09E-EN-04 Back cover

