CX-Supervisor

Software Release 3.4

Script Language
Reference

Trademarks and copyrights Notice

Note:

A\
A\

Notice

OMRON products are manufactured for use by a trained operator and only for
the purposes described in this manual.

The following conventions are used to classify and explain the precautions in
this manual. Always heed the information provided with them.

Indicates information of particular interest for efficient and convenient
operation of the product.

Caution:
Indicates information that, if not heeded, could possibly result in minor or
relatively serious injury, damage to the product, or faulty operation.

Warning:
Indicates information that, if not heeded, could possibly result in serious injury
or loss of life.

Trademarks and copyrights

Copyright

MECHATROLINK is a registered trademark of Yaskawa Corporation.
Trajexia is a registered trademark of OMRON.
EtherCAT is a registered trademark of the EtherCAT Technology Group.

All other product names, company names, logos or other designations
mentioned herein are trademarks of their respective owners.

Copyright © 2017 OMRON

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, mechanical,
electronic, photocopying, recording, or otherwise, without the prior written
permission of OMRON.

No patent liability is assumed with respect to the use of the information
contained herein. Moreover, because OMRON is constantly striving to improve
its high-quality products, the information contained in this manual is subject to
change without notice. Every precaution has been taken in the preparation of
this manual. Nevertheless, OMRON assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained in this publication.

Copyright Notice

Table of Contents

) o 1 o= 1
L6 [g b=V S TR= T o I eTo] o) V74 o) 1
(670701771 | o] S PP PR SR 1

SECTION 1

Introduction e 11

SECTION 2

4 o] (=T =17 o1 - 13

SECTION 3

5 o7] o £ 17

3-1 L0 o] = o2 SRR 17
3-2 Vo = TP PPT 17
3-3 e (0] =T o RSP URR 17

SECTION 4

CX-Supervisor Script Language........ccccccccevvimmmmmncnnimmrmesssnserrsessssns 19
4-1 o]) S 20
4-1-1 Basic Point ASSIGNMENT ... e e e e ee e e e s 20

4-1-2 Further Point ASSIGNMENToiiiiiii e 20

4-2 LogiC and ARTNMETIC.ttt e e 21
4-2-1 ArithmeEtic OPEratOrSooiii it e e e e e e e e e e eea e e as 21

4-2-2 BitWiSE OPEIatOrS.o iiiiiiee ittt e et e e e e e e e e e e e e e e e e e e e nnananaaeaeeaan 22

e B WoTo | (o= 1@ o =T = | (o] £ TSR PTRR 22

4-2-4 Relational OPEratOrSccciieiiiiiiiiee et e e et e e e e e e e e e e et eea e e as 23

4-3 (0] a1 (o] IS £= 1 (=] 0 1 T=Y o £SO 24
4-3-1 Simple Conditional Statements...........oooiiiiiiii e 24

4-3-2 Nested Conditional StatemMENTScccuuiiiiiiiiiiie e e e e e e e 25

G T 0= IR 7= [T o SRR 27

R A O S S | =) I oo o TSRS PU 28

4-3-5 DO WHILE/UNTIL LOOP cuttttieiiittiiiee e eitiite e e e etiiee e e e sttt e e e s stee e e e e snntee e e e anntaeeaesasnneeeaeeannneeeeeennnees 29

4-4 RST8] o 01U 1 1= 3 SR 29
N O | OSSPSR 29

4-4-2 REUEUMN ettt e e e e e e e e e e e a b e et e e e e e e e e e e e e eeaaaaaaaaa s 30

4-5 U131 o] o U 30
4-5-1 Command String DeliMItersoiiiiiii e 30

4-5-2 INA@NTATION ... e e e e e e e e e e s e e e e e e e e s 30

S G TN |V [W1 1] o] L= @7 o 40 0 =1 o o <SSR 31

s e 1 (=Y a1 (1Y SRS 31

4-5-5 QUOLATION IMAIKS......eiiiiiiiiiie et e e e e e e e e st e e e e e st e e e e esnsteeeeeeasnaeeeeeannreeeeeanrees 31

S ST U= 0 T (SRR 31

4-6 Indirection within Script Commands and EXPreSSioNSoccuuiiiiiiiiiiiie i 32
4-7 Point Arrays within Script Commands and EXPressionsceeeiiiiiiiiiiiiiiiiiiieiieeeeeeee e, 33

Table of Contents

4-8 USING ATIGSES ...ttt ettt ettt e e e ekttt e e e e bttt e e e e ek bt e e e e e aa bt et e e e e anbe e e e e abeeeeeeeanrreeaeean 33
SECTION 5

VBScript Language Referencecccoorvreciiiieciiivccisvseecnenecannnnnn 37

5-1 I o) == 110 =SSP 37
SECTION 6

Functions and Methods........cccccciiiciiiciircirr e 441

6-1 @0 =Te A O7eT 191 14 F= 1o o S PP PRSPPI 46

L o o I 0704 =Y | o] = (PSPPSR 46

LR A O (o1 o @ o] [=Tox (= PRSPPI 46

L e T =111 O PR 47

L S o o 5 OSSR 48

L ST B T3 1 o[TSRS 49

L L G T o =Y | o PR 50

LRy A o o] 4 -0 a1 =1 I 1 PSR 50

L T 1Y o = PR 51

LR S T Lo -1 - SO SEER 51

B-1-10 VErICAl Fillcciieieeiieeeeeee e e e e e e e e e e e et e e e e e st e e e e e nbreeeeeannees 52

L e B Y 411 o = PSR 53

L e 2 T | 1 o PR 53

6-2 = T T O o001 14 F= T o PO PRSP 54

Lo B 0 (o 1T = To TP SUR 54

6-3 L€ T=TT=T = 1 O o0 10 =T Lo LSS 55

6-3-1 EXPONENEAL.....coi et e e 55

B-3-2 PIAYOLE ... e e e e e e e e e e nar e e e e areeeeeanees 55

6-3-3 DUSPIAYPICIUIE ... 56

B-3-4 PlaySOUNGooiiiiiiiiiie ettt e e e et e e e e e e e e e r e e e e e a e e e e e aare e e e e e aabeaeeeanres 56

L T o ¥ o Vo [PSR 56

Lo R I W oV 2N o] o] o= T o USSR 57

B-3-7 RUNHEID et e e e et e e e e e b e e e e ebee e e e e annees 57

B-3-8 SELLANQUAGE ...ceeiiiiiiiiie it e e e e e e e e e e e ————raaaaaeaaaaaas 58

B-3-9 SEINYLEDooiiiiiiiiiiie ettt e e e e e e e e e e bar e e e e e rar e e e eanreeeeanres 58

6-3-10 GetPerformanCeINfOt e e e e e e e e s e e e e e e e e eaana 59

L B] U3 o Y o SRR 60

6-4 (076] 001 0[] a1 ez= 1110 o 1S3 @] g0 = o o < S 60

LR I 07 (o 17107]] T 1= o | S RSP USR 60

6-4-2 ENADIEOLE ... e e nrae e e e nrees 60

L T = =1 o] =Y e I USSR 61

6-4-4 LaunchTroUDIESNOOLETooeiiiiiii e e e e e e e e e e e e e e e e e e annes 61

B-4-5 OPENCOMPONENT ..ottt e e e e e e e e et e eeeeeaeeeeeseeeeaasbsabeeeeeeaaaaeaannns 61

6-5 o1 @] o ¢ 0 =1 o (o < SRS 62

Lo B = g o7 | o] o USSR 62

B-5-2 COPYAITAYuuuitiiiiiiie e e e e e e e ettt e e e e e e e e e e e —tbeeaeeeeeeaeeeaeesaasesbasaeeeeaaaseesaaaannsssbesreeaeaeaeaanns 62

LR T B T[T o] (=T €1 o 11 | o J USSR 63

LT D T (== o =1 oo PR 63

LS T =T 1 (o T | QP R PR 64

Table of Contents

6-6

6-7

6-8

6-9

o T =1 =1 o] L=T € o TU o TP URR 64
B-5-7 ENADIEPOINT. ...ttt e e e e e e e e e 65
LT T o o7 USSR 65
B-5-9 FOMCERESEL ...ttt et e e e e e e e ettt et e e e e e e e e eeeaa e nnraraeeeeaaeeeaaannne 65
o I o] o7 T PSP 66
o T 1= SO SR 66
B-5-12 INILIAIISEAITAY ...ttt e et e e e st e e e et e e e e e bbee e e e aneeas 66
LRt T G T 1o T 11 4 = 1o PP 67
LT I O 11 11 01U o | SR 67
o ST o T 1] (SRR 68
o LTS T= 1 = | PSPPSR 68
IO O o T o g =T Lo £SO 68
B-6-1 ClOSEPLC ...ttt e e et e e e et e e e e et e e e e e e e e e e e e b e a e e e e e e e e e e enrees 68
6-6-2 DOWNIOAAPLCPIOGIAMuuiiiiiiiiiiee e e e e ettt e e e e e e e e et re e e e e eaeeeee s s nsabasaeeeeaaaeeesaeaanns 69
B-6-3 GEIPLCIMOMEeeiiiieiiiiiie ettt et e e e et e e e e et e e e s e s te e e e e ensteeeeeesneeeeeeenseeeeeannees 69
B-6-4 OPENPLOC ...t e e — e e e e e e e e e e e e e e e abaeaeeanrees 70
6-6-5 PLCCOMMSFAIIEA......cooi it e e e et e e e e e e eaeeas 70
L G R C I 31Y/Fo 1 o SOSUEE 71
B-6-7 SEIPLCIMOUE.eiiiieiiieie ettt e e e e e e e e et e e e e st e e e e s e eanbe e e e e e nnreeeeanees 71
6-6-8 SEtPLCPhONENUMDEToiiiiiiiiiie ittt e et e e e st e e e e e nnree e e e eneees 71
ST I U o] (o T=To | o I @ o { oo | =1 1 o F TP PPRP 72
Temperature Controller COMMENAS...........oiiiiiiiiiie et e e e e e 72
L I O T (o) LU o 1= T PR URR 72
R N 0 = 7= Tod (U o] /[Yo [3SR 73
6-7-3 TCGetStatuSParametero a e 73
L S N O 3 LY ¢ 4 To) =1 oo | SRR 74
B-7-5 TCREQUESISIATUS ...t et e e e e e e e e e e s e e e e e e e e e e e aannnes 75
L ST O 3 &= o I o R PR PRR 75
B-7-7 TCRUNSIOP ...ttt ettt e e e e e e e e e ettt e e e e eeeeeeeeseaessasssreseeeeeaeaaaasnnes 76
B-7-8 TCSAVEDALA ...ttt e e e e e e e e e e e e e e e aaeeeeaaannes 76
B-7-9 TCSElNGLEVEIT ...ttt e e e e e e e e e ennbe e e e e eneeas 76
L T O LY S URR 76
=Ty 4 T o] 3 4= Lo £SO 77
6-8-1 ACKNOWIEAGEAIGIM ...ttt e et e e e e nnae e e e e eneeas 77
6-8-2 AcCKNOWIEAGEAIAIGIMS ...ttt e e e s e s e e e e e e aaaaaaeeeeeeeeeeranernranes 77
6-8-3 AcknowledgeLateStAIGIMooo e 77
6-8-4 ClearAlarmHISTONYooi it 78
6-8-5 ClOSEAIAMMHISIONYooiiiiiiiie e e e e e e e e e e e e st e e e e e e e eaeeeannnes 78
6-8-6 ClOSEAIAMSTAtUS ...ttt e aaeeeeannnes 78
6-8-7 DisplayAlarmHISIOrycooiiiiieie e 78
6-8-8 DisplayAlarmMSIatus..........c.c.uuuiiiiiiiiiii e a e e e e e e aaanes 79
LS B =t g F= o] (= AN =T 0 SO URRR 79
6-8-10 ISAIArMACKNOWIEAGEAcooiiiiiiiiiiiii e e e e e 79
B-8-11 ISAIGIMACTIVEeeiiiiie ettt e e e e e e e et e e ee e e e e e e e e e nnnes 80
1 L= @] o g0 0 =g o < USRI 80
L Tt N O o 7= {1 80
S 071 o)V o1 [T SO UUPRTRRRRRRIR 81
L T B I 1o 1= =Y 1 ST 81

Table of Contents

6-10

6-12

6-13

6-15

LG o 1 1 81
B-9-5 IMOVEFIIE ...ttt e e e e e e e et e e e erre e e e e anees 82
L T T O oY= o 1SS 82
LS o o 0 1= S 82
L T o U= To [PPSR 83
6-9-9 REAAMESSAGTEeeeiiiiiiiiiiie et 83
LS L0111 84
L B O 4 PSR 85
B-9-12 WWIEIMESSAGE ...ttt e e et e e e e bt e e e e b e e nnees 85
RECIPE COMMENAS ...ttt ettt e e sttt e e e e eab et e e e e aa b b e eee e e anbee e e e e eanbeeeesanbreeeaens 86
B-10-1 DISPIAYRECIPESeieieieeieeeeeeee ettt ettt ettt ettt e s e s e s e e eeeeeaaaeeeeeeeeeerensrnneenrnnns 86
6-10-2 DOWNIOAARECIPE ...ttt e e e e e e e et e e eeeeaa e e e e e e e e s neeneeeeaaeaaaaaaannns 86
6-10-3 UPIOGARECIPE ... ettt ettt e e sttt e e s st e e e e e e nbb e e e e e e nbee e e ennes 86
REPOIt COMMEANGAS......cciiiieee et e e e e e e e e s et e e e e e eeaeaeeesse s s saasaeaaeeeeaaeessaaansnrsnseees 87
B-11-1 GenerateREPOIT ... oot e e e e e e e e e s e e ee e e e e ennne 87
L v T Y1 =T o T o A PR PRR 87
[I G YA oY =T oY o (PSPPI 88
1= A0 1 4 o' =T o - SRS 88
Lo 72 T = 107 I I OSSPSR 88
L 2 = 11 o SRR 88
L 1122 T O o T SRR 89
L S o 0 0 =Y i = APPSR 89
B-12-5 GetTEXILENGINceiiiiiiiie et e e e e e e e e s s e e ereeeeeeaeaaaaas 90
L 2 T = PSSR 90
L B A - S PSSP PP 91
LR I B |V =TT To YU SPRPUR 91
L 122 T 1V [T SRR 91
B-T12-T0 PrintMESSA0E ...ttt ettt e et e e et e e e e ettt e e e e e e e e e nre e e e e ennees 92
L 17 I T o | SRR 92
B-12-12 TEXITOVAIUE ...ttt e e e e et et e e e e e e e e e e e e e e e nnnneeneeeaeeeaaaannns 92
L D B A= L1 I I S 93
EVEN/EITOr COMMENGScouiiiiiie ittt e e e ettt e e e e sttt e e e s sttt e e e e s snbaeeeesabteeaeesantseeeesanssneaanns 93
Lo B e I O 1= =T =y o] 4 o T PP PP PUR 93
L I e O (o =7= T = 4 o] X o Yo PSPPSR 93
(SR I T I BT 1= o] F= 1Y = o3 oY S PPPPPPN: 93
6-13-4 ENabIEErrOrLOgging. eii i 94
Lo B ST o T | =1 o PSPPSR 94
LS I T o o | Y=Y o P PPPPPPN: 94
101 (Y G @] o 4]0 0 =1 g o £ SRR 95
6-14-1 ClearSPOOIQUEUEuueieie ettt et e st e e et e e e s e b e e e e e e snnbe e e e e ennbeeeeannees 95
6-14-2 ENabIEPIINtINGccco it e e e e e e e e e e e e e — i a—aaa———— 95
6-14-3 PriNtACHVEPAGEceiiiiiiiiii e e e 95
B-T4-4 PriNtPagecoiiiiiieiii e enb e e e e anees 96
L T] 5 T == o PSR PRR 96
6-14-6 PrintSPOOIQUEUE ...ttt ettt et e e e e e e e s e e e e e eeeeeeeaaaaaeaaaannns 97
Lo Yo 013V O o] 49T 0 ¢ F=T o Vo L PR PRR 97
L o N o T 1o PR 97
Lo R W o T[0TV | PO TP PR 97

B-15-3 SELUPUSEIS ...coiiiiiiiiii ettt e et e e e e e e e e e an b e e e s e nnb e e e e e e nbe e e e e annees 98

6-15-4 ChangeUSEIrPasSSWOIGuuuiiiiiiiieeiii ittt e e e e e e e e e eeeeae e e e e s sseasabasaeeeeaaaeeesaaanes 98
6-16 Data Logging COMMANGSoiiiiiiiiiiiiei ittt et e e et e e e st e e e e e sabe e e e e sbneeeeenaaes 98
B-16-T AUAItPOINT......coiiiiiieiii et e e e e e e e e s et e e e s et e e e e e ansreeaeeenses 98
B-16-2 ClEAILOGFIIE.t e e e e e e e e e e e e eaeaeeeees s anntnbaaaeeeeeeanannnes 99
B-16-3 ClOSELOGFIIE ...ttt e e e e e e e enees 99
B-16-4 ClOSELOGVIBW ...ttt et e e ettt e e e et e e e e e e s be e e e e e annbeeeeeanneeas 99
6-16-5 EXPOMANAVIEWLOQ ... ciieiiiieieie e e e e e e e e e e e et e et e et a e e aeaeeaeaaaaeaeeeeeeeeeesnrnnes 100
L Lo SR = (o To Ty 1o T PO PP PRP 101
B-16-7 OPENLOGFIIEt e e e e e e e 102
B-16-8 OPENLOGVIEW ...coiiiieiiiii ittt ettt e e e e e e e e e s se e s aeeeeeeaaeeseesaasansbssbenneaeaeeeanas 102
B-16-9 StartAUdItTIalooeieiiiiiee e e e e e e nres 103
B-16-10 SLOPAUILTIAI ...t e e e e et e e e e re e e e e enbe e e e ennres 103
R SR IS =y { o Yo o [o TR OSSP 104
L Lo D2 (o] o] Moo T 119 T H PP PP PUPRP 104
6-17 Database COMMANGSooiiiiiiieii it e e e e e e e e e s s s reeeeeeeaeaeseesaannnsennnanaaeeaens 104
B-17-1 DBAAANEW ..ottt e ettt e e e et e e e e ettt e e e e e sttt e e e e snbeeeeeeeneaeaeeanneeas 104
L B | T (o L] USSR 105
B-17-3 DBDEIBLE.ceii it e e e a e e e are e e e e arreas 106
B-17-4 DBEXECULEcoe ittt et e e e et e e e ettt e e e st e e e e e nraee e e nnees 106
B-17-5 DBGEILASIEITON ...ttt e nnnneenneeeaaeeaan 108
B-17-6 DBIMOVEcoviiiiiiitiiee ettt ettt e e e e e et e e e e et e e e e e et be e e e e e et aeeeeeeasbaeeeeeanbeeeeannrees 108
L A | =T oY o SRS 110
B-17-8 DBPIOPEIYceiiiiiiiiiii ettt e b e e e e e bt e e e e e b et e e e e a b e e e e e anb e e e e 110
B-17-9 DBREAAoeiii ittt et e e e e e e e e e e e e e — e e e e a e e e e aaraeeeeanres 111
B-17-T0 DBSCREMA......ci ittt e e e e et e e e e et ae e e e e e ttee e e e e snraeeeennnees 112
L I R B] - | (=PSSOSR 113
L D B | ST o] o o] o - T PP RRT 114
B-17-13 DBUPAALEcoiiiiiiiiie ettt e e e e s e e e e e st e e e e e be e e e e e snbeeeeeesntaeeeennnees 114
L I B B | A) (-SSP 115
B-18 Serial POt FUNCHONSeiiiiiiii et e s nrnaaneeeaaaaeeeeas 116
B-18-1 INPULCOMPOIL......oeeeeiiiiiie et e e e e e et e e e e e e e e e e e s e e eaanbabaeeaeeeanas 116
B-18-2 OULPUICOMPOILeiiiiiiiiiie ettt e e e e e e e st e e e e e st ae e e e e s tteeeeessntaeeeeesnsaeeeennnes 116
B-18-3 CIOSECOMPOIL......coiiiiiiiiiee ettt et e e e e et e e e e e et e e e e e et e e e e e aaabeeaeeeensreeaeennnses 117
B-18-4 OPENCOMPOIL ...t e e e e e e e e e e e ae e et e e e e e e e e e s eeaeaanbaareeeeeeaas 117
B-18-5 SEUPCOMPOI. ...ttt et e e e e e e e et e e e e e e e e e e e e e e e nnnnsreeneeeaaaeaean 117
LR T o 1177 G 0 T o] o T SO 118
R R I T o (o] o 1Y o V2SO P PUPUPRR 118
B-19-2 PULPTOPEITY ...ttt ettt e e e e e e e e e e et e e e e eeaaaee e e s e e s nnnnbenaaaaaaaaaaas 119
L RS T b ol | (= PRSP 119
B-19-4 EXECULEVBSCIIPT . .uuiiiiiiiiii e e e e e e e e e e e ra e e e e eaaaeeaas 120
B-19-5 EXECUIEUSCIIPL ..ottt e et e e e e e e e e e e e e e e s nnnenaeeaaaee e as 120
6-19-6 EXECULEVBSCIIPIFIIE ... 120
6-19-7 EXECULEJSCIIPLFIlE e e e e e e e 121
6-19-8 GenerateEVeNto e a e 121
SECTION 7
Script ExXample ... e e e e 123

7-1 [F 1| oY) o IRS Te7 o] SRR 123
SECTION 8

Colour Palette........ooieirere e ree e e 127
Appendix A

OPC Communications Control ..., 129

A1 (070] 0] oo) aT=T o1 fl o o] o= 4 (- SO PEPRPR 129

A.2 Lol o) G Y =Y =T R 129

A3 U 0o (o] o 1RSSR 129

F N e - 1= OSSPSR 129

ALB.2 REAM ... e e e et e e et e e et e e e ataeeeraeeearaaans 130

F AN G T AT | (YRS 130

Appendix B
CX-Server Communications Control.........cccecvvevmieirceircrveirnrenn. 131

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30

U o (o] o I TS TUPUURPPP 131
Y2 18- S 132
VAIUBSottt et oo oo oo e e e e oottt ettt ettt aeeeeeeeeeeeaaeeeeeeettee————————————————————————————— 132
SEIDEIAUIIPLC ...ttt e e e e et e et e e e e ae e e e e e aaaaaaaaas 133
OPENPLC ...ttt e e e et e e e e e ——— et eaae e e e e e e e e b ———————aaaaaaeaeaaaan——araaaaaaeaeaaaaaans 133
CLOSEPLCottt e e e e e e e e e e e e e e et b e b b e e e e e eeeaeeeeeeearaeaeaaeaaaaeaaaaaans 133
Y= Lo IR TSRS 133
L AT L 133
Y= Lo L =Y R UPRRPPPP 134
A1 YN =Y TSSOSO 135
0 117/ Yo [135
TYPENGIME ..ot e e ettt e e e e e e e e e e et ettt e eeee b e e aeaeeeeeaaaeaaaeeeteeeateeaeaeeereararaaara 135
ISPOINEVAIIA ... e e e e e e e e e e e e e e e e e e et e et e et et ae e e b ns 135
PLC MEMOTY FUNCLONSuuiiiiiiiiiiiee ettt e e et e e e e e e e e e s s e s s b st eaeeeaaaaeeeeeesnnssseeees 135
) (d IO T SRR PPOPP 136
] (o] o) €3S 136
1SS F=To [LU= 1) 2RO PPPPP 137
CIOCKREAAot e e e e e e e e e e et e b e e eeeeaeeeeeesaeraeeeeaeaaeeeaaaaanns 137
(04 Fo ot [T/ 1] (TSR URUURPR 137
RAWEFINS . ..ot e e et e e e e e e ee et taeaeeeeaaaeeeeesaeaasantaaaeeaeeeeesanasnnssnneees 137
A IV ..ttt ettt eeeeeeeeeeeeeeeeeteetee—————————————————————————————————— 138
T O G EES ALUS ...ttt ettt a e e e e e e e e aaeaaaaeaaaaaaeeereaaara———_ 138
O] 3T 0310] (] oo | T PPRRP 138
SEIDEVICEAUUIESS ..ottt e e e e e e e e e e et e e e e e e e e eeeeeeeeaabbabreeaeaeeeeaaaanns 138
ST (B oYY o710 o] o o [PPSR 139
L€ 7=y 1B LAY ot =T 0 o] o e [P EPRPPPRR 139
L0 o] or=To =i roTe =1 1 o F PRI 140
[DTo 11V][Y=To | o oo | r=1 0 o PR SRRP 140
g 0] (=Y o RS 140
=TS £ = (o1 1 o TR SRRSO POP 141

Appendix C
JScript Features....... e e e e 143

Appendix D
Obsolete FEatUreS......ooiiiiieiieieieiriecrereseseressnsesessnsessssasessnsanensas 14D

D1 Windows 2000, NT, Windows ME, Windows 98 and Windows 95...........coouiiiiiiiiiiieeeeeee e, 145
D.2 (O] [0l o] (o =To1 i {11T0 (0] 11 0= TSP PUPRRPR 145
D4 DDE COMIMENGAS ...ttiiiiiiiiiieeeee ettt e e e e e ettt e e e e e e e e e eeeeeaeaabaaaeaeeeeaeaeeeesasaaatsssssneesaeeeaaaaannsnes 146
D.4. 1 DDEEXECULE ...ttt ettt e e e e e e e e e e e e e e e e e aara———aaaa 146
[| B 1= 11 (= (-SSR 146
D.4.3 DDEOPENLINKSccoiiiiiitiiee ettt e e e e e e e ettt e e e e e e eeeeeseeaeababbreereeeaaaaeeeaaaanes 147
D44 DDEPOKEcooiiietiiiee ettt ettt et e e e e et e e e et ae e e e e raa e e e e nraeeeeannres 147
D.4.5 DDEREQUESL ... oot e e ettt a e e e e e aaaaaa et ae e a—ana 148
D.4.6 DDETEIMINGLE ... e ettt a e e e e e e e e e e e e e e eerearaaaaa 149
D.4.7 DDETErmMINAEAILottt e et a e e e e e e e aaaeaaeeeeeeeeeees 149
D.4.8 ENADIEDDE ... e e e e e e e e e nneeas 149
D.5 Graph COMMANASuuiiiiiiiiiiie ettt e e e e e e e e e e e e et b e e e e e aeaeeeeessaiareeaaaaaaeaaas 150
[IR TR B @1 ==] - o o RS 150
(DR TS =14 (€ = o o OO 150
(DT TS (o] o €T T o] o O OSSRt 151
[R S =T 11 (=T o] [PPSR 151
(DRI ST - V=T - o] o H OO PPURRN 152
D.5.68 SNAPSNOL.....ooeiiiiiii e e e e e e e e —aaaaaeeeaaaanaaae 152
D.5.7 GetPOINIVAIUE ...ttt e e e e e e e e e s s e ereeeeaaaeeeeeaannnne 153
D.5.8 GetSPOOICOUNL ...t e s e e reereaaaaeeaarne 153
D.5.9 SetPrinterCoNfig........cccocuiiiiiiiii e e e e e e e e e eaaaaas 153

Appendix E
Glossary of Terms.......cooveciiiiicciirrccr e e e 155

RevVvision history ... s 163

10

SECTION 1 Introduction

SECTION 1
Introduction

This reference manual describes the script language syntax as a supplement
to the CX-Supervisor User Manual. It provides detailed definition of the syntax
of CX-Supervisor scripts that drive project, page, object actions and CX-
Supervisor expressions as used by objects and scripts.

Typographic conventions used in the examples in this reference manual are
as follows:

» Script commands and reserved words are shown in the preferred case,
which may be either lower-, upper- or mixed-case.

* Points are shown in lower-case. Objects are shown in upper-case.
The following terms are used in this reference manual:

« Application. A set of files, containing an executable file, that carry out
certain tasks. This reference manual refers to the Microsoft Excel and
Microsoft Word for Windows applications.

+ Constant. A point or object within a script that takes only one specific
value.

+ Executable. A file that contains programs or commands, and has an
" .EXE' extension.

* Nesting. To incorporate one or more IF THEN ELSE/ELSEIF ENDIF
statements inside a structure of the same kind.

* Operands. Constants or point variables.

» Operators. Relational, arithmetic, and logical statements, for instance '+,
'<="or 'AND".

« Or (). The'|' symbol is used to represent 'or', where there are two or
more forms of the same syntax.

* Point Types. Either Boolean, Integer, Real or Text.

» Point Variable. A point or object within a script that may take different
values.

» Strings. Data in the form of text delimited by quotation marks (" "), which
can be assigned to a point.

+ The'{"and '} braces. Must be inserted around the argument command or
an error is reported. An error is reported if there are spaces between
braces.

 'TRUE'and 'FALSE'. Refer exclusively to Boolean states, where Boolean
state 0 is 'FALSE' and Boolean state 1 is "TRUE'.

11

SECTION 1 Introduction

12

SECTION 2 Expressions

SECTION 2
Expressions

This chapter describes the use of expressions within scripts.

Expressions consist of operators and operands:
» Operators are relational, arithmetic, logical and include many functions.
» Operands are constants or point variables.

Expressions can be used in a script as part of a statement (refer to chapter 3
Scripts, chapter 4 CX-Supervisor Script Language, and Chapter 6 Functions
and Methods). However expressions can be applied to the following actions
directly using the associated Expression: or Digital Expression: field:

+ Blink.

* Close page.

+ Colour Change (Analogue).
» Colour Change (Digital).

« Display Status Text.

» Display Text Point.

+ Display Value.

+ Edit point value (Analogue).
« Edit point value (Digital).

» Edit point value (Text).

+ Enable/Disable.

* Horizontal move.

* Horizontal percentage fill.

* Resize height.

* Resize width.

* Rotate.

+ Show page.

* Vertical move.

» \Vertical percentage fill.

+ Visible.

The following example of a simple expression contains a point (‘redcars')
attached to a particular object with an appropriate object action, Resize
(Height). At runtime, once the value of the point has been met within the
attributes declared within the Active Expression Range/Required Height:
fields, the current object is resized accordingly. This example is an Integer or
Real example, whereby the value of the point either falls inside or outside the
specified range. In this example, the point 'redcars' must fall between 0 and
40 for the expression to be met.

13

SECTION 2 Expressions

Resize [Height]

]
E sprezsion: | 0K]
_ Cancel |

!redcars{

Cancel

— Active Expreszion Bange ¢ Beguired Height;

Minimurn i alue: !D binimurn Height: iﬂ
b asirnirn 4 alue; id[l kdaximiam Height: 160

— Justification:

* Bothom i Centre " Top

Browse. .. i

The following example of a more complex expression contains a test on point
'position’. If 'position' is more than 300 in value, and 'position’' is less than 450
in value, i.e. the value of 'position' is between 300 and 450, then the
expression has been met, and an action is initiated (in this instance the current
object is made visible if the expression is met). This example is a Boolean
example, whereby either the expression is met ('TRUE') or not met (‘'FALSE').
A Boolean value is always returned from a Digital Expression: field, as
opposed to an Expression: field, which returns an Integer or Real value.

Operators used within this example are fully described in chapter 4, Logic and
Arithmetic.

Visibility

[igital Expreszion; K.
!pu:usiti-:un » 300 AMD position < 450

Cancel

Wizibility State:

 Irwisible while TRUE Yisible while FALSE
v &izble while TRLUE, Invizible while FALSE

dad

Browse...

The following example of an expression contains a value point 'prompt’ which
is included at the value position denoted by a '#' symbol.
Dizplay ¥alue [Analogue]

E =prezzion; 0K
I$Secand

Cancel

— Dizplayed T ext:
Browse. .

0,

!Numl:uer af seconds: #

E_Fl:lrl.l.lat - r._. LeftJuStlfled
+ Standard [T Leading Zeros
i~ Ecientific

! i~ Hexadecimal

Refer to the CX-Supervisor User Manual for detailed dialog descriptions.

14

SECTION 2 Expressions

Note:

Note:

Note:

Note:

Note:

Boolean Expressions execute when the expression is TRUE so it can be said
that every Boolean expression has an inferred "== TRUE". Sometimes
Boolean expressions can be difficult to read e.g. "bMyFlagPoint" or "BitMask &
0x80. It can help maintenance if this "== TRUE" is explicitly specified e.g.
"bMyFlagPoint == TRUE" or "BitMask & 0x80 == TRUE".

When using Boolean operators (e.g. ==, !=, &&, ||, |) never mix tests for
Boolean and non Boolean operands. For example never use "bMyFlagPoint
== 1" or "bMyFlagPoint == 0". Instead always test using the correct Boolean
constant i.e. "TRUE" or "FALSE" for CX-Supervisor scripts, or "True" and
"False" when using VBScript.

On Condition scripts are only executed when the expression is TRUE.
Sometimes this leads to peculiar results, for example using $Second as it will
be executed when $Second changes to 59, and to 1 but not when it changes
to 0. To execute a condition script any time a point changes, force the
expression to always evaluate to TRUE for example "$Second || TRUE". This
works because the $Second forces the expression to be tested when the point
changes, but the || TRUE means the test will return TRUE regardless of the
value of the point.

Use array points in On Condition expressions with caution. The expression
"MyArray[3] == 1" does not mean "execute every time the third element
changes to 1". It means execute when any element of MyArray changes and
the third element happens to be 1

Using an array point without any index is the same as specifying element 0 i.e.
MyArray actually means MyArray[0] ==

15

SECTION 2 Expressions

16

Object SECTION 3 Scripts

SECTION 3
Scripts

A CX-Supervisor script is a simple programming language used to manipulate
points. Scripts can be created at different levels, at object level, page level or
project level. Although the script code can be applied to all levels of script,
there are subtle differences, described in the following paragraphs.

3-1 Object
If a script is executed as a runtime action of an object, then the script can

affect the object of the action, or any other, depending on the actual content of
the script.

3-2 Page
Page scripts are concerned with manipulating points and graphical objects
that are used or included within that page. In other words page scripts are
used to drive a number of actions on the occurrence of a particular event.
These actions may manipulate several graphical objects on one page.

3-3 Project

Scripts can be applied to a project to manipulate points. These scripts are
associated with events that occur throughout the whole operating session

17

Project SECTION 3 Scripts

18

SECTION 4 CX-Supervisor Script Language

SECTION 4

CX-Supervisor Script Language

This chapter describes the CX-Supervisor script language syntax. It provides
a detailed definition of the syntax of CX-Supervisor scripts that drive project,
page and object actions, and CX-Supervisor expressions as used by objects
and scripts. In conjunction with the script functions and methods described in
Chapter 6, the CX-Supervisor script language provides a very powerful,
compiled, fast and full featured programming language.

The following table describes the script language syntax at a glance.

Function Name

Function Type

Type

Remarks

&, |, A< >>

bitwise operators

All

Applies bitwise expressions

(objects) statement OoP Specifies an object name for
modification or test.

(points) statement All Specifies a point name for
modification or test.

+, -, %1, %, =, ++, |arithmetic All Applies arithmetic

-- operators expressions.

<, >, <=, >= == |=relational All Applies relational

operators expressions.

AND logical operators |All Applies logical expressions.

CALL statement All Call a subroutine

DO LOOP WHILE |statement Scr Script segment to be repeated

UNTIL EXIT DO

FALSE Boolean state Scr Applies Boolean expression.

FOR TO STEP statement Scr Script segment to be repeated

NEXT EXIT FOR

IFTHEN statement Scr Applies a test to a script.

ELSE\ELSEIF

ENDIF

OR logical operators |All Applies logical expressions.

NOT logical operators |All Applies logical expressions.

REM statement Scr Remarks on line or lines of
script.

RETURN statement Scr Stops sequential execution of
script.

SELECT CASE/ |[statement Scr Applied to complex tests.

END SELECT

TRUE Boolean state Scr Applies Boolean expression.

The "Type' column refers to the types of script and expression the function can
be applied to. 'All' refers to both expressions and scripts. 'Scr' refers to scripts
only. 'OP' refers to Object and Page scripts only.

19

Points SECTION 4 CX-Supervisor Script Language

4-1 Points

4-1-1 Basic Point Assighment

Syntax
pointname = expression
Remarks
Argument Description
pointname The point name to be assigned a value.
expression The value to be assigned to pointname. The expression
may be of type Boolean, Integer, Real or Text.

Typical Examples
count = 100

The Integer or Real point 'count' is assigned the value 100.
result = TRUE

The Boolean point 'result' is assigned the state "TRUE".
name = "Valve position"

The Text point 'name' is assigned the associated text, contained within
quotation marks.

Note: When assigning Real (floating point) values to an Integer point the assignment
uses the 'Symetrical Rounding Down' (towards 0) standard. This means a
value of 4.1 would be assign a value 4. A value of -4.1 would asign a value of -
4.

References
Refer to chapter 4, Punctuation for details of the use of quotation marks.

4-1-2 Further Point Assignment

Syntax
pointname = expression
Remarks
Argument Description
pointname The point name to be assigned a value.
expression The value to be assigned to pointname. The expression

may be of type Boolean, Integer or Real and can include
other points, logical or arithmetical expressions.
Mathematical precedence is applied as follows:

» Parenthesis (highest).

* Unary minus and NOT logical operator.
« Multiplication, division and modulus.

+ Addition and subtraction.

+ Greater than, less than, greater than or equal to, and
less than or equal to relational operators.

» Shift Left (SHL) and Shift Right (SHR).

+ Equal to and not equal to relational operators.

» Bitwise AND, XOR, OR.

* AND logical operator, OR logical operator (lowest).

20

Logic and Arithmetic

SECTION 4 CX-Supervisor Script Language

Typical Examples
lift = height + rate/5.0

The Integer or Real point 'lift' is assigned the value calculated by the value of
point 'rate' divided by 5, plus the value of point 'height'. Precedence can be
changed by the introduction of parenthesis.

lift = 1lift - 0.2
The Integer or Real point 'lift' is assigned the value calculated by the current
value of point 'lift' minus 0.2.

distance = distance * time

The Integer or Real point 'distance’ is assigned the value calculated by the
current value of point 'distance' multiplied by point 'time'.

References

Refer to chapter 4, Logic and Arithmetic for details of the use of arithmetic and

logic functions. Refer to chapter 4, Punctuation for details of the use of
parenthesis.

4-2 Logic and Arithmetic

4-2-1 Arithmetic Operators

Syntax
pointname = expression

Remarks

Argument Description

pointname The point name to be assigned a value based on an
arithmetical expression.

expression The value to be assigned to pointname. The expression
may include the following operators with points and
constants:

* Addition '+'.

» Subtraction '-'.

* Multiplication ™.
» Division'f".

* Modulus '%'.

* Increment '++'.

¢« Decrement '--".

Typical Examples
result = 60 + 20/5

The Integer or Real point 'result' is assigned the value calculated by the value
of 20 divided by 5, plus 60.

lift = height + rate/5.0

The Integer or Real point 'lift' is assigned the value calculated by the value of
point 'rate' divided by 5, plus the value of point 'height'. Precedence can be
changed by the introduction of parenthesis.

References
Refer to chapter 4, Punctuation for details of the use of parenthesis.

21

Logic and Arithmetic

SECTION 4 CX-Supervisor Script Language

4-2-2 Bitwise Operators

Syntax

pointname = expression

or

IF expression

or
DO WHILE expression
or
DO UNTIL expression
Remarks
Argument Description
pointname The pointname to be assigned a value based on the
bitwise operation.
expression The value to be assigned to pointname, or to be

evaluated as a Boolean expression. The expression can
include the following operators with points and constants:

+ Bitwise AND, 'BITAND' or '&'".

+ Bitwise OR, 'BITOR' or '|".

+ Bitwise XOR, 'XOR' or "',

+ Bitwise Shift Left, 'SHL' or '<<".

+ Bitwise Shift Right, 'SHR' or ">>".

Typical Examples
MSB = value

& 128

The Boolean point 'MSB' is set "'TRUE' if the binary representation of 'value'
has the bit set which is worth 128.

Pattern = value << 2

The binary representation of 'value' is shifted left twice, and stored in 'pattern’.
Each Shift Left operation has the effect of doubling the value, so two shifts

quadruple the value.

4-2-3 Logical Operators

22

Syntax
pointname =

or

expression

IF expression

or

DO WHILE expression

or
DO UNTIL expression
Remarks
Argument Description
Pointname The point name to be assigned a value based on a

logical expression.

Logic and Arithmetic SECTION 4 CX-Supervisor Script Language

Argument Description

Expression The Boolean value to be assigned to pointname or the
Boolean value forming a conditional statement. The
expression includes the following operators with points
and constants:

* And'AND".
« Or'OR"
* Not'NOT".

Typical Examples

flag = temp AND speed
The Boolean point 'flag' is assigned a value based on the logic of point 'temp’
AND point 'speed'. If 'temp' and 'speed’ are both not zero, 'flag' is set to 1, or
"TRUE". A value of zero in either 'temp' or 'speed' supplies 'FALSE' or 0 to
'flag'.

IF flag AND temp AND speed THEN

flag = FALSE

ENDIF
The Boolean point 'flag’ is assigned 'FALSE', on the condition that 'flag" AND
point 'temp' AND point 'speed' are all not zero. If the condition fails, then 'flag'
is not assigned 'FALSE'.
References

Refer to chapter 4, Control Statements for details of the use of the IF THEN
ELSE/ELSEIF ENDIF statements.

4-2-4 Relational Operators

Syntax
IF expression
or
DO WHILE expression
or
DO UNTIL expression
Remarks
Argument Description
Expression The value forming a conditional statement. The

expression may include the following operators with
points and constants:

* Greater than '>'".

¢ Lessthan'<"

» Greater than or equal to '>=".
* Less than or equal to '<=".

* Not equal to 'l=".

* Equalto'=="

Typical Example

IF fuel < O THEN
fuel = 0
ENDIF

23

Control Statements

SECTION 4 CX-Supervisor Script Language

The point 'fuel' is assigned the value 0 on the condition that currently, 'fuel' is
less than 0. If 'fuel' is not less than 0, then it is not assigned the new value.

References

Refer to chapter 4, Control Statements for details of the use of the IF THEN
ELSE/ELSEIF ENDIF statements.

4-3 Control Statements

4-3-1 Simple Conditional Statements

24

Syntax
IF condition THEN
statementblockl
ENDIF
or
IF condition THEN
statementblockl
ELSE
statementblock?2
ENDIF
Remarks
Argument Description
Condition The condition is made up of points and constants, using

relational, logical or arithmetical notation as a test. The
condition can evaluate Boolean state 'TRUE' and
'FALSE', Integer or Real numbers, or a text string.

Statementblock1 One or more statements which are performed if the
condition is met.

Statementblock2 |One or more statements which are performed if the
condition is not met.

Typical Examples

IF fuel < 0 THEN
fuel = 0
ENDIF
Provided Integer point 'fuel' is less than 0, then it is assigned the value 0.

IF burner THEN
fuel = fuel - rate
ENDIF

Provided Boolean point 'burner' is "TRUE", then Integer point 'fuel’ is assigned
a new value. ltis also possible to apply 'IF burner == TRUE THEN' as the first
line, with identical results.

IF distance > 630 AND distance < 660 AND 1lift >= -3

THEN
winner = TRUE
burner = FALSE
ENDIF

Provided that Integer point 'distance' is greater in value than 630 AND
'distance’ is less in value than 660 (i.e. 'distance' is a value between 630 and
660) AND point 'lift' is greater than or equal to -3, then Boolean points 'winner'
and 'burner' are assigned new values.

Control Statements SECTION 4 CX-Supervisor Script Language

IF burner AND fuel > 0 AND rate > 0 THEN

fuel = fuel - rate
ELSE

1lift = 0

altitude = 0
ENDIF

Provided that Boolean point 'burner' is "TRUE" AND points 'fuel' and 'rate' are
greater in value than 0, then 'fuel' is assigned a new value. Otherwise points
'lift" and 'altitude' are assigned a new value.

References
Refer to chapter 4, Punctuation, Indentation for details on the layout of code.

4-3-2 Nested Conditional Statements
Syntax

IF conditionA THEN
statementblockl
IF conditionB THEN
statementblock3
ENDIF
ELSE
statementblock?
ENDIF

or

IF conditionA THEN
statementblockl
IF conditionB THEN
statementblock3
ELSE
statementblock4
ENDIF
ELSE
statementblock?
ENDIF

or

IF conditionA THEN
statementblockl
ELSEIF conditionB THEN
statementblock3

ENDIF

or

IF conditionA THEN
statementblockl
ELSE
statementblock?
IF conditionB THEN
statementblock3
ELSE
statementblock4
ENDIF
ENDIF

Remarks

25

Control Statements

SECTION 4 CX-Supervisor Script Language

26

Argument Description

conditionA The condition is made up of points and constants, using
relational, logical or arithmetical notation as a test. The
condition can evaluate Boolean state 'TRUE' and
'FALSE', Integer or Real numbers, or a text string.

conditionB This condition is nested in the first condition, either on a
successful or unsuccessful evaluation of conditionA.
The condition is made up of points and constants, using
relational, logical or arithmetical notation as a test. The
condition can evaluate Boolean state 'TRUE' and
'FALSE', Integer or Real numbers, or a text string. There
is no limit to the number of nested conditional
statements.

statementblock1 One or more statements which are performed if
conditionA is met.

statementblock2 One or more statements which are performed if
conditionA is not met.

statementblock3 One or more statements which are performed if
conditionB is met.

statementblock4 One or more statements which are performed if
conditionB is not met.

Typical Examples

IF burner AND fuel > 0 AND rate > 0 THEN
lift = 1lift + rate/5
ELSE
count = 1
IF altitude > 140 THEN
1lift = 1ift - 0.2
ENDIF
ENDIF

Provided a successful evaluation has been made to points 'burner' AND 'fuel'
AND 'rate’, point 'lift' is updated with the current value of rate divided by 5 plus
'lift'. Otherwise, a further evaluation is required on point 'altitude’. If 'altitude’ is
currently greater than 140, then 'lift' is decremented by 0.2.

IF burner AND fuel > 0 AND rate > 0 THEN
lift = 1lift + rate/5
ELSE
IF altitude > 140 THEN
lift = 1lift - 0.2
ENDIF
ENDIF
IF burner AND fuel > 0 AND rate > 0 THEN
lift = 1lift + rate/5
ELSEIF altitude > 140 THEN
lift = 1lift - 0.2
ENDIF
These two examples are identical. The use of the ELSEIF statement
combines the ELSE statement and the IF/ENDIF statements for brevity. It is
acceptable to have more than one ELSEIF statement in an IF THEN ELSE/
ELSEIF ENDIF construct.

References

Control Statements

SECTION 4 CX-Supervisor Script Language

4-3-3 Case Select

Refer to chapter 4, Punctuation for details of the use of indentation.

Syntax

SELECT CASE expression
CASE expression
statementblockl
CASE expression
statementblock?2
CASE expression
statementblock3
END SELECT

or

SELECT CASE expression
CASE expression
statementblockl
CASE expression
statementblock?2
CASE ELSE
statementblock3
END SELECT

Remarks

Argument Description

expression The expression may be a point, or a calculation of

constants and/or points that produces a result.

statementblock1 One or more statements that are only performed if the

preceding CASE expression is met.

statementblock2 |One or more statements that are only performed if the

preceding CASE expression is met.

statementblock3 |One or more statements that are only performed if the

preceding CASE expression is met.

Typical Examples

SELECT CASE colourvalue
CASE 1
colour
CASE 2
colour
CASE 3
colour
CASE ELSE
colour (0)
END SELECT

This example shows the assignment of a colour according to the value of a
point. The value of Integer point 'colourvalue’ is evaluated and compared with
each case until a match is found. When a match is found, the sequence of
actions associated with the CASE statement is performed. When 'colourvalue'
is 1, the colour given to the current object is blue, when 'colourvalue' is 2, the
colour given to the current object is green, when 'colourvalue' is 3, the colour
given to the current object is cyan. If 'colourvalue' falls outside the integer
range 1-3, then the colour given is 0 (black). Like ELSE and ELSEIF, the
CASE ELSE statement is optional.

(blue)
(green)

(cyan)

27

Control Statements SECTION 4 CX-Supervisor Script Language

SELECT CASE TRUE
CASE temperature > 0 AND temperature <= 10
colour (blue)
CASE temperature > 10 AND temperature <= 20
colour (green)
CASE temperature > 20 AND temperature <= 30
colour (red)
CASE ELSE
colour (white)
ENDSELECT

In this example, instead of using a point as the condition as with the previous
example, the value is the condition - in this case Boolean state "TRUE" - with
the integer point 'temperature' being tested at each case. Ifitis "TRUE" that
'temperature' is between 0 and 10, then the current object is set to blue, or if it
is "TRUE" that 'temperature' is between 11 and 20, then the current object is
set to green, or if it is "TRUE" that 'temperature' is between 21 and 30, then
the current object is set to red. If none of these CASE statements are met,
then the current object is set to white. Like ELSE and ELSEIF, the CASE
ELSE statement is optional.

References

Refer to chapter 6, Object Commands for details of applying attributes to an
object and for the use of the Colour object command. Refer to chapter 8,
Colour Palette for details of the Colour Palette colour designation.

4-3-4 FOR... NEXT Loop

Syntax
FOR pointname = startpt TO endpt STEP steppt
statementblockl
NEXT
Remarks
Argument Description
pointname The pointhame to be used as the loop counter.
startpt The initial setting of pointname, and the first value to be
used through the loop.
endpt The last value to be used. The loop ends when
pointname exceeds this value.
steppt Amount to increase pointname by every pass of the loop.
Steppt can be negative to count backwards providing
startpt is larger than endpt. The STEP keyword and
variable may be omitted in which case pointname is
incremented at each pass of the loop (identical to adding
STEP 1).

Typical Examples

FOR loopcount = 0 TO 100
Ellipse l.vertical%fill = loopcount
NEXT

In this example, 'Ellipse_1'is gradually filled 100 times.

FOR loopcount = 100 TO 0O STEP -5
Ellipse l.vertical%fill = loopcount
NEXT

28

Subroutines SECTION 4 CX-Supervisor Script Language

In this example, the fill for 'Ellipse_1' is gradually removed 20 times (100
times/-5).

Note: Loop statements should be used with caution, as they consume processor
time while they are running and some other parts of the system may not be
updated.

4-3-5 DO WHILE/UNTIL Loop
Syntax

DO WHILE expression
statementblock
LOOP
or

DO
statementblock
LOOP WHILE expression
or
DO UNTIL expression
statementblock
LOOP
or

DO
statementblock
LOOP UNTIL expression

Remarks

Argument Description

expression The expression may be a point, or a calculation of
constants and/or points that produces a result.

statementblock One or more statements to be executed multiple times
depending on expression.

Typical Example

DO WHILE dooropen == TRUE
Message ("You must shut the door before
continuing")

LOOP

DO

nextchar = Mid (Mystring, position, 1)
position = position + 1

LOOP UNTIL nextchar = "A"

Note: Loop statements should be used with caution, as they consume processor
time while they are running and some other parts of the system may not be
updated.

4-4 Subroutines
4-4-1 Call
Syntax

CALL subroutine (arguments)
Remarks

29

Punctuation

SECTION 4 CX-Supervisor Script Language

4-4-2 Return

4-5
4-5-1

4-5-2

30

Punctuation

Argument Description
subroutine The name of the subroutine defined at project level.
arguments The list of arguments required by the subroutine

separated by commas. Each argument may be a
pointname, constant, arithmetical or logical expression or
any valid combination.

Typical Example
CALL MySub ($Second, "Default", 2 + Intl)

Syntax
RETURN

Typical Example
IF limit > 1000 THEN
RETURN
ELSE
value = limit
ENDIF
REM final part of script
POLYGON_ 1.COLOUR = red
ELLIPSE 5.WIDTH = value

The integer point 'limit' is tested for its value. If its value exceeds 1000, then
the condition is met, and the RETURN command is executed. All statements
after the RETURN command are ignored. If the value of integer point 'limit'
does not exceed 1000, then the RETURN command is not executed, and
statements after the RETURN command are performed.

References

Refer to the CX-Supervisor User Manual for the use of the RETURN
statement for Recipe validation.

Command String Delimiters

Indentation

Description
Alternative string delimiters allowing string to contain quote " characters.
Syntax
{Some "string" text}
Typical Example
Message ({Error: "Invalid Function" occurred})

The '{" and '} braces inserted around the whole strings allows the actual text in
the string to contain quotes which will be displayed normally. They can be
used in any situation where quotes can be used whether or not embedded
quotes are required. However, for clarity the quote characters should be used
by preference.

Typical Examples

IF burner AND fuel > 0 AND rate > 0 THEN
lift = 1ift + rate/5

Punctuation

SECTION 4 CX-Supervisor Script Language

ELSE

IF altitude > 140 THEN

lift = 1lift - 0.2

ENDIF

ENDIF

IF burner AND fuel > 0 AND rate > 0 THEN
lift = 1ift + rate/5

ELSE
IF altitude > 140 THEN

lift = 1ift - 0.2

ENDIF

ENDIF

Both examples provide identical functionality, but the use of indentation, either
spaces or tabs to show the construction of the statements aids readability.

The use of the ELSEIF statement in this example was omitted for clarity.

4-5-3 Multiple Commands

4-5-4 Parenthesis

Typical Examples

count = 75
result = log(count)
count = 75 : result = log(count)

Both examples provide identical functionality, but the use of the colon between
statements allows both to reside on the same line.

Typical Examples
result = 20 + 30 * 40
The result is 1220.
result = (20 + 30) * 40
The values in parenthesis are calculated first. The result is 2000.
References

Refer to chapter 4, Logic and Arithmetic, Arithmetric Operations for further
details.

4-5-5 Quotation Marks

4-5-6 Remarks

Typical Examples
name = "Valve position"

The Text point 'name’ is assigned associated text, contained within quotation
marks. Quotation marks must be used in this instance.

Message ("This text to be displayed as a message.")
Passing static text as arguments to functions.
BlueCarsAck = IsAlarmAcknowledged ("BLUEPAINT")

The point 'BlueCarsAck' is assigned a Boolean state based on the alarm
'BLUEPAINT'. Quotation marks must be used for an alarm name.

Syntax
REM | rem comment
or

'comment

31

Indirection within Script Commands and Expressions SECTION 4 CX-Supervisor

Remarks
Argument Type Description
Comment --- Descriptive text.

Typical Examples

REM The following statement adds two numbers
result = 45 + 754
result = 45 + 754 'add two numbers

4-6 Indirection within Script Commands and Expressions

It is possible to use text points directly or indirectly in place of literal string
arguments within scripts and expressions. For instance, each of the following
commands has the same effect:

» Using a string literal;
PlayOLE ("ole 1", 0)
» Using a textpoint directly;

textpoint = "ole 1"
PlayOLE (textpoint, 0)

» Using a textpoint indirectly via the '"A' notation.
text = "ole 1"

textpoint = "text"
PlayOLE (“textpoint, 0)

It is possible to use text points indirectly in place of point name arguments
within script commands. For instance, each of the following commands has
the same effect:

+ Using a point name directly;

verbnumber = 0
PlayOLE ("ole 1", verbnumber)
» Using a textpoint indirectly via the 'A' notation.

verbnumber = 0

textpoint = "verbnumber"

PlayOLE ("ole 1", “textpoint)
An example using Indirection
The value of point indirection can be seen in a situation where it is necessary
to dynamically change the pointname that an object is linked to. In the
following example a toggle button is configured to control the Boolean state of
one of four points:

» The four Boolean points to be controlled are called 'motor1’, 'motor2’,
'motor3' and 'motor4'.

» The text point 'textpoint' is used to store the name of the Boolean point to
be controlled.

» The text point 'text' is used to store the string value of the integer point
'index’

» The integer point 'index' (which has a range 1-4) is used to dynamically
change the point being controlled.

» Access to any of the four Boolean points 'motor1’', 'motor2', 'motor3’,
'motor4' can be achieved by applying indirection to 'textpoint' using the "'
notation and changing the contents of 'textpoint'.

For instance, in order to dynamically change the Boolean point a toggle button
is linked to follow these steps.

32

Point Arrays within Script Commands and Expressions SECTION 4 CX-Supervisor

4-7

4-8

1,2 3... 1. Link the toggle button to a textpoint using indirection e.g. *textpoint.
2. Link the following script code to run as required. e.g. on clicking a button.
» Text = ValueToText(index)
+ TextPoint = "motor" + text

3. The ValueToText function converts the integer value of the point 'index’
into a string held in the textpoint 'text'. Therefore the point 'text' contains
either'1','2', '3' or '4'. The expression 'motor' + text appends the contents
of the point 'text' to the literal string 'motor'. Therefore 'textpoint' contains
either 'motor1’, 'motor2', 'motor3' or 'motor4' dependant on the value of
'index'. Change the value of the 'index' to determine which Boolean point
to control. e.g. via the Edit Point Value (Analogue) animation.

Point Arrays within Script Commands and Expressions

It is possible to access the elements of a point array directly or indirectly from
within scripts or expressions.

« Setting the value of an array point directly;
arraypoint[2] = 30

+ Getting the value of an array point directly;
value = arraypoint[2]

« "Setting the value of an array point using indirection;

textpoint = "arraypoint"
“textpoint[2] = 30
+ Getting the value of an array point using indirection;

textpoint = "arraypoint"

value = "“textpoint[2]
An example using Point Arrays
The value of array points can be seen in a situation where it is necessary to
dynamically change the pointname that an object is linked to. In the following
example a toggle button is configured to control the Boolean state of one of
four elements of an array point.
The Boolean array point 'motor' is configured to contain 4 elements.

The integer point 'index' (which has a range 0-3) is used to dynamically
change the element of the point being controlled.

In order to dynamically change the element of a Boolean point that a toggle
button is linked to follow these steps.

1,2, 3... 1. Link the toggle button to an array point. e.g. 'motor[index]'.

2. Change the value of the 'index' to determine which element of the Boolean
point to control. e.g. via the Edit Point Value (Analogue) animation.

Using Aliases

This facility is used to declare an alias - that is, to define a text string that can
be used in place of another text string or a number within any script or
expression. The Alias Definitions dialog is displayed by selecting the "Alias
Definition..." option from the Project menu. It can also be displayed if
"Aliases..." is selected from the script editor. The dialog displays either the
User defined aliases or the preset System aliases and is toggled between
these two displays by pressing the User/System Alias button.

33

Using Aliases

SECTION 4 CX-Supervisor Script Language

34

The following illustration shows the Alias Definitions dialog displaying a
number of User defined aliases. The System aliases are pre-defined and can
not be edited or added to.

@BOTTOMCEMTRE 7 Battann Centra

@LEFT] Left

@TOP 2 Top

@IJSERDEFINED 3 User Defined

@EOTTOM] Eiattom

@ROTTOMLEFT 5 Bottom Left

@CEMTRE 4 Centre

@IJP 1 Up

@CEMTRERIGHT 3 Centre Right

@RIGHT 2 Fiight

@TOPLEFT 0 Top Left

@CEMTRELEFT 3 Centre Left

@00 a Dovan

@ROTTOMRIGHT a8 Eiottom Right

@FRAME 1 Indicates Frame Colour should be set
@TOPRIGHT 2 Taop Right

@TOPCEMTRE 1 Top Centre

@FILL 2 Indicates Fill Colour should be zet
<] _>I_I

Syntax:
@AliasNameAlias definition 'optional comment

Remarks:

Argument Type Description
@AliasName string The string name of the alias
Alias definition string This is a string representing the actual text or

expression of the expanded alias.

' comment string This is an optional comment.

The @ symbol at the beginning of each line initiates each alias command. For
example, the text string @SomePoint could be used to represent any
sequence of characters in a script or expression - e.g. it could be defined as:

@SomePoint = InArray[l]
or even
@SomePoint = Inarray[l] + Inarray([2] / 2

This is an easy way of identifying the individual members of array points. It
can also be used to associate names with numbers, for example,

@SecondsPerDay = 86400

Alias definitions are stored in a simple text file in the project directory, called
<project name>.pre. The format of the file consists of any number of lines
such as:

@Testl = InArray[l1l2] * 10

i.e. an @ symbol followed by the name of the alias, then an equals sign (or
space), followed by the definition of the alias. Anything that follows the last
apostrophe (') symbol on a line is interpreted as a comment. Any line which
does not start with the @ symbol is also assumed to be a comment.

Typical Examples

Declare boiler temperatures
@BoilerTempl = InArray[0] '
@BoilerTemp2 = InArray[l]

for boiler room 1

' for boiler room 2

Using Aliases

SECTION 4 CX-Supervisor Script Language

Note:

@SecondsPerMinute = 60 ' sets duration
Aliases may also be used to create a complicated expression such as

@HYPOTENUSEsqrt (Opposite * Opposite + Adjacent *
Adjacent) 'Calculates length of Hypotenuse
This can be used in a script in the following way:
Opposite = 8.45
Adjacent = 9.756
length = QHYPOTENUSE
where Opposite, Adjacent and length are all REAL points.

Changing an alias definition after it has been used in an expression or script
will not automatically change the result in the script. The appropriate script or
expression where that alias is used must be accessed and recompiled by
pressing the OK button in order to apply the changes.

35

Using Aliases

SECTION 4 CX-Supervisor Script Language

36

List of Features:

SECTION 5 VBScript Language Reference

5

1

SECTION 5

VBScript Language Reference

This chapter is a reference for the syntax of Microsoft Visual Basic scripting
language called VBScript. These features are provided by the Windows

Scripting Host, included by default with Windows and Internet Explorer.

For a full User Guide, Language reference and details of the latest versions

and support contact Microsoft at http://msdn.microsoft.com

List of Features:

Category

Keyword / Feature

Array handling

Array

Dim, Private, Public, ReDim
IsArray

Erase

LBound, UBound

Assignments

Set

Comments

Comments using ' or Rem

Constants/Literals

Empty
Nothing
Null

True, False

Control flow

Do...Loop
For...Next

For Each...Next
If...Then...Else
Select Case
While...Wend
With

Conversions

Abs

Asc, AscB, AscW
Chr, ChrB, Chrw
CBool, CByte

CCur, Cdate

CDbl, Cint

CLng, CSng, CStr
DataSerial, DateValue
Hex, Oct

Fix, Int

Sgn

TimeSerial, TimeValue

Date / Times

Date, Time

DateAdd, DateDiff, DatePart
DateSerial, DateValue

Day, Month, MonthName
Weekday, weekdayName, Year
Hour, Minute, Second

Now

TimeSerial, TimeValue

37

List of Features:

SECTION 5 VBScript Language Reference

38

Category Keyword / Feature
Declarations Class
Const

Dim, Private, Public, ReDim
Function, Sub
Property Get, Property Let, Property Set

Error Handing

On Error
Err

Expressions

Eval
Excute
RegExp
Replace
Test

Formatting Strings

FormatCurrency
FormatDateTime
FormatNumber
FormatPercent

Input / Output

InputBox
LoadPicture
MsgBox

Literals

Empty
False
Nothing
Null
True

Math

Atn, Cos, Sin, Tan
Exp, Log, Sqr
Randomize, Rnd

Miscellaneous

Eval Function
Execute Statement
RGB Function

Objects

CreateObject
Err Object
GetObject
RegExp

Operators

Addition (+), Subtraction (-)
Exporentiation (*)

Modulus arithmetic (Mod)
Multiplication (*), Division (/)
Integer Division (\)

Negation (-)

String concatentation (&)
Equality (=), Inequality (<>)
Less Than (<), LessThan or Equal(<+)
Greater Than (>)

Greater Than or Equal To (>=)
Is

And, Or, Xor

Eqv, Imp

Options

Option Explicit

List of Features:

SECTION 5 VBScript Language Reference

Category Keyword / Feature
Procedures Call
Function, Sub
Property Get, Property Let, Property Set
Rounding Abs
Int, Fix, Round
Sgn
Script Engine ID ScriptEngine

ScriptEngineBuildVersion
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Strings

Asc, AscB, AscW
Chr, ChrB, Chrw
Filter, InStr, InStrB
InStrRev

Join

Len, LenB

LCase, UCase
Left, LeftB

Mid, MidB

Right, RightB
Replace

Space

Split

StrComp

String

StrReverse

LTrim, RTrim, Trim

Variants

IsArray
IsDate
ISsEmpty
IsNull
IsNumeric
IsObject
TypeName
VarType

39

List of Features:

SECTION 5 VBScript Language Reference

40

SECTION 6 Functions and Methods

SECTION 6
Functions and Methods

This chapter describes the Functions and Methods available to the scripting
language. In most cases, this can be CX-Supervisor script, VBScript or

JScript.

The following table describes the Functions and Methods at a glance.

Function Name Function Type |[Type |Remarks
AcknowledgeAlarm alarm command |Scr |Acknowledges an alarm.
AcknowledgeAllAlarms |alarm command |Scr |Acknowledges all alarms.
Acknowledgel atestAlarm [alarm command |Scr |Acknowledge the latest alarm.
Acos unary function |All Applies unary expression.
Asin unary function |All Applies unary expression.
Atan unary function |All Applies unary expression.
AuditPoint Data Logging Scr |Logs a point value into the CFR
command database.
CancelForce point command |Scr |Removes the forcing of values on
a point.
ChangeUserPassword |Data Logging Scr |Changes a user’s Windows
command password.
Chr text command |All Displays a character based on the
ASCII character set.
ClearAlarmHistory alarm command |All Clears the alarm history.
ClearErrorLog event/error All Clears the error log.
commands
ClearLogFile Data Logging Scr |Clears a data log file
command
ClearSpoolQueue printer All Discards any queued messages
command or alarms.
close object command |Scr |Closes a specified page.
CloseAlarmHistory alarm command |All Closes the current alarm history.
CloseAlarmStatus alarm command |Scr |Closes the current alarm status.
CloseComponent comms All Closes a component for a PLC
command (e.g. CX-Server components).
CloseErrorLog error command |Scr |Closes the currently open Error
Log.
CloseFile file command Scr |Closes the open file.
CloseLogFile Data Logging Scr |Closes a data log file
command
CloseLogView Data Logging Scr |Closes the log viewer
command
ClosePLC PLC command |[Scr |Close communications with a
PLC.
colour object command |OP | Specifies a colour to an object.
CopyArray point command |All Copies the content of an array.

41

SECTION 6 Functions and Methods

42

Function Name Function Type |Type |Remarks

CopyFile file command Scr |Copies a specified file.

cos unary function |All Applies unary expression.

DeleteFile file command Scr |Deletes the specified file.

disable object command |OP |Disables an object.

DisableGroup point command |All Prevents a group of points to be
read or written.

DisablePoint point command |Scr |Disables communications to a
point.

display object command |Scr |Displays a specified page.

DisplayAlarmHistory alarm command |Scr | Displays the current alarm history.

DisplayAlarmStatus alarm command |Scr |Displays the alarm status of all
current alarms.

DisplayErrorLog event command |Scr |Displays the current Error Log.

DisplayPicture general Scr |Reload an image for a picture

command object

DisplayRecipes recipe command [Scr |View the current recipes in the
project.

DownloadPLCProgram |PLC command |All Downloads specified files to the

PLC.

DownloadRecipe

recipe command

Scr

Downloads a specified recipe.

EditFile file command All Edits a specified file.
EnableAlarms alarm command |All Enables alarm functions.
EnableErrorLogging error command |Scr |All actions become subject to
Error Logging.
EnableGroup point command |All Permits a group of points to be
read or written.
EnableOLE comms Scr |Allows use of OLE functions.
command
EnablePLC comms Scr |Allows use of PLC functions.
command
EnablePoint point command |Scr |Enables communications to a
point.
EnablePrinting printer All Permits printing of Alarms or
command messages.
ExportAndViewLog Data Logging Scr |Exports data log and views
command
ExportLog Data Logging Scr |Exports data log
command
FileExists file command All Specifies the existence of a file.
Force point command |Scr |Locks the value of a point.
ForceReset point command |Scr |Sets a point value to 0.
ForceSet point command |Scr |Sets a point value to 1.
FormatText text command |All Inserts text with standard 'C'

formatting characters.

SECTION 6 Functions and Methods

Function Name Function Type |Type |Remarks
GenerateReport report command |All Produces a report based on a
report template.
GetBit point command |All Retrieves a bit from a point.
GetPerformancelnfo general All Retrieves internal performance
command and diagnostic values.
GetPLCMode PLC command |All Retrieves the mode of a PLC.
GetTextLength text command |All Specifies the number of
characters in a text point.
height object command |OP |Specifies the height of an object.
horizontal%fill object command |OP |Specifies the horizontal fill of an
object.
InputPoint point command |Scr |Reads a value from a point.
IsAlarmAcknowledged alarm command |Scr | Tests if a specified alarm has
been acknowledged.
IsAlarmActive alarm command |Scr |Tests if a specified alarm is
currently active.
LaunchTroubleshooter [comms Scr |Launches SGW tool for
command troubleshooting controllers
Left statement Scr |Extracts characters from the left of
a string
log unary function |All Calculates the natural logarithm
on a number.
log10 unary function |All Calculates the base-10 logarithm
on a number.
LogError error command |Scr [Logs an error message with the
error logger.
LogEvent error command |Scr |Logs an event message with the
error logger.
Login security Scr |Logs a user into a run-time
command application.
Logout security Scr |Logs a user out of a run-time
command application.
Message text command |Scr |Outputs a string in a message
box.
Mid text command |Scr |Extracts a substring from a string.
move object command |OP |Moves an object.
MoveFile file command Scr |Moves the specified file.
OpenComponent comms All Opens a component for a PLC
command (e.g. CX-Server components).
OpenfFile file command Scr |Opens the specified file.
OpenLogFile Data Logging Scr |Opens a data log file
command
OpenLogView Data Logging Scr |Opens the Data Log Viewer

command

43

SECTION 6 Functions and Methods

44

Function Name Function Type |Type |Remarks

OpenPLC PLC command |[Scr |[Opens communications with a
PLC.

OutputPoint point command |Scr |Displays the current value of a
point.

PlayOLE gen.command |Scr [Plays an OLE object.

PlaySound gen.command |Scr |Plays a sound file.

PLCCommsFailed PLC command |All Specifies if the PLC
communications have failed.

PLCMonitor PLC command |Scr |Monitors a PLC.

PointExists point command |All Specifies the existence of a point.

PrintActivePage gen. command |Scr |Prints the currently active page.

PrintFile file command Scr |Prints the specified file.

PrintMessage text command |All Prints messages to the configured
'Alarm/message printer'.

PrintPage gen.command |Scr |Prints the specified page.

PrintReport report command |All Prints a report

PrintScreen gen. command |Scr |Prints the current display screen.

PrintSpoolQueue printer All Prints all queued alarms or

command messages.

Rand gen. command |Scr |Calculates a random number.

Read file command Scr |Reads data from an open file into
a point.

ReadMessage file command All Reads text from an external file.

Right text command |Scr |Extracts characters from the right
of a string.

rotate object command |OP |Rotates an object.

RunApplication gen.command |Scr |Runs the specified application.

RunHelp gen. command |Scr |Runs the specified help file.

SelectFile file command All Specifies a file name and path.

SetBit point command |All Sets a specific bit from a point.

SetNYLED gen.command |Scr |Sets the hardware LEDs on NY
IPC

SetPLCMode PLC command |All Sets the mode of a PLC.

SetPLCPhoneNumber PLC command |All Sets a phone number to a PLC.

SetupUsers security Scr |Defines users and passwords for

command Login.

ShutDown gen.command |Scr |Terminates CX-Supervisor.

sin unary function |All Applies unary expression.

sqrt unary function | All Applies unary expression.

StartAuditTrail Data Logging Scr |Starts Audit Trail logging.

command

SECTION 6 Functions and Methods

Function Name Function Type |[Type [Remarks
StopAuditTrail Data Logging Scr |Stops Audit Trail logging.
command
StartLogging Data Logging Scr |Starts a data set logging.
command
StopLogging Data Logging Scr | Stops a data set logging.
command
tan unary function |All Applies unary expression.
TCAutoTune temp. controller |All Starts or stops a temperature
command controller auto-tune operation.
TCBackupMode temp. controller |All Defines how a temperature
command controller stores internal
variables.
TCGetStatusParameter |temp. controller |All Retrieves the temperature
command controller status parameter.
TCRemoteLocal temp. controller |All Defines the operational mode of a
command temperature controller.
TCRequestStatus temp. controller |All Retrieves the temperature
command controller status.
TCReset temp. controller |All Resets the temperature controller.
command
TCRspLsp temp. controller |All Defines the setpoint mode used
command by the temperature controller.
TCRunStop temp. controller |All Defines either auto-output mode
command shift or manual output mode shift.
TCSaveData temp. controller |All Saves data associated with the
command temperature controller.
TCSettingLevel1 temp. controller |All Performs a settinglevel function
command for the temperature controller.
TextToValue text command |Scr |Converts a string to a numerical
point value.
UploadPLCProgram PLC command |All Uploads programs in the PLC to
specified files.
ValueToText text command |Scr |Converts a numerical value into a
text point.
vertical %fill object command |OP |Specifies the vertical fill of an
object.
ViewReport report command |All Displays a report
visible object command |OP |Toggles the visibility of an object.
width object command |OP |Specifies the width of an object.
Write file command Scr |Writes a value to an open file.
WriteMessage file command All Writes text to an external file.

The 'Type' column refers to the types of script and expression the function can
be applied to. 'All' refers to both expressions and scripts. 'Scr' refers to scripts
only. 'OP' refers to Object and Page scripts only.

45

Object Commands

SECTION 6 Functions and Methods

6-1 Object Commands

Note:

6-1-2 Other Objects

46

Object commands
rectangles or lines.

Objects are native to

control native CX-Supervisor graphical objects, like

CX-Supervisor and therefore cannot be accessed or

commands issued from external script languages, like VBScript or Jscript.

6-1-1 Current Object

Syntax
objectcommand
Remarks
Argument Description

"The expression can be made up of the following
commands, which are also described in chapter 6,
Object Commands:

+ Colour command.

+ Disable command.

* Visible command.

*+ Move command.

* Rotate command.

* Vertical fill command.

* Horizontal fill command.
* Height command.

* Width command.

The content of the commands are made up of
arithmetical or logical expressions, x and y co-ordinates,
or references, varying between commands. The colour
command requires a colour identifier.

Typical Example
colour (red)

The current object is

References

Refer to:

specified as red in colour.

* Chapter 6, Blink for use of the blink command.
» Chapter 6, Colour for use of the colour command.

* Chapter 6, Disa
» Chapter 6, Heig

ble for use of the disable command.
ht for use of the height command.

» Chapter 6, Horizontal Fill for use of the horizontal fill command.
» Chapter 6, Move for use of the move command.
» Chapter 6, Rotate for use of the rotate command.
» Chapter 6,Vertical Fill for use of the vertical fill command.
» Chapter 6, Visible for use of the visible command.
» Chapter 6, Width for use of the width command.
"The CX-Supervisor User Manual for details of the Animation Editor.

Syntax

Object Commands

SECTION 6 Functions and Methods

6-1-3 Blink

objectname.objectcommand
pagename.objectname.objectcommand

Remarks
Argument Description
objectname This is the name of the object. The object is provided

with a generic name on creation, which can be amended
later to something more meaningful. The script is
automatically updated following any amendment to the
object name.

objectcommand This can be made up of the following commands, which

are described in chapter 6, Object Commends:
* Blink command
» Colour command.
* Disable command.
* Visible command.
* Move command.
* Rotate command.
* Vertical fill command.
» Horizontal fill command.
* Height command.
* Width command.

The content of the commands are made up arithmetical
or logical expressions, x and y co-ordinates, or
references, varying between commands. The colour
command requires a colour identifier.

Typical Examples

POLYGON 1.colour (red)
POLYGON 1.colour = red

The specified object, 'POLYGON_1'is set to be red in colour.
References
Refer to:

CX-Supervisor User Manual for details of object names.
Chapter 6, Blink for use of the blink command.

Chapter 6, Colour for use of the colour command.
Chapter 6, Disable for use of the disable command.
Chapter 6, Height for use of the height command.
Chapter 6, Horizontal Fill for use of the horizontal fill command.
Chapter 6, Move for use of the move command.

Chapter 6, Rotate for use of the rotate command.
Chapter 6, Vertical Fill for use of the vertical fill command.
Chapter 6, Visible for use of the visible command.
Chapter 6, Width for use of the width command.

Syntax

objectname.blink (colour, status)

47

Object Commands

SECTION 6 Functions and Methods

6-1-4 Colour

48

Note:

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

colour Colour to blink to. Some colour values within the colour
palette have a meaningful colourlD. This takes the form
of the colour name, e.g., 'black’ or 'yellow'. Alternatively,
an integer value of 0x1000000 can be added to a
number 0-65 to select a palette entry.

status This argument may be omitted. May be on of:

TRUE - turn blinking On.
FALSE - turn blinking Off.
If omitted, TRUE is assumed.

Typical Examples
blink (red,
Start blinking red.

TRUE)

LINE 1.blink(OxFFFFOO, status)

The object LINE_1

starts or stops blinking yellow depending on value of

Boolean point 'status’.

Syntax

objectname.colour (expression, context)
colour (expression, context)

or

objectname.colour (colourID, context)
colour (colourID, context)

An equals
brackets:

sign may be wused as an alternative to

objectname.colour = expression
colour = expression

or

objectname.colour = colourID
colour = expression

Either spelling 'colour' or 'color' is acceptable.

An equals sign may also be used for most other object commands, even if it is
not directly specified in this manual.

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression The expression may be an Integer point, or a calculation

of constants and/or points that produce an Integer value
between 0 and 16777215. This is the desired colour's
RGB value. (formatis 0OxBBGGRR).

Object Commands

SECTION 6 Functions and Methods

6-1-5 Disable

Argument Description

colourlD Some colour values within the colour palette have a
meaningful colourlD. This takes the form of the colour
name, e.g., 'black’ or 'yellow'. Alternatively, an integer
value of 0x1000000 can be added to a number 0-65 to
select a palette entry.

context This argument is optional an may be omitted. It defines
which part of the object has it's colour changed. May be
one or more of:

@FILL - change fill colour

@FRAME - changes frame colour

If omitted both are changed. Equivalent to @FILL |
@FRAME

Typical Examples
TEXT 3.colour (blue)
or
TEXT 3.colour = blue
The object "TEXT_3'is set to blue.
BALL.colour (35 + 0x1000000)
The object 'BALL' is set to colour 35 from the colour palette.
BALL.colour (0OxFF0000,QFILL)
The object 'BALL' is set to blue.

shade = tintl + tint2

IF shade > 65 OR shade < 0 THEN
shade = 0

ENDIF

ELLIPSE 1l.colour (shade + 0x1000000)

The point 'shade’ is set to a value based on 'tint1' and 'tint2', and is tested first
to ensure that it is a value between 0 and 65. If 'shade’ falls outside this range,
then it cannot be applied as a colour to an object, and is therefore reset to 0
(or black). ELLIPSE_1'"is set to the palette colour of the value of shade.

References

Refer to chapter 6, Colour Palette for details of colour names and colour
numbers.

Syntax
objectname.disable (expression)

Remarks

Argument Description

objecthame This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression The expression can be made up of points resulting in
"TRUE' or 'FALSE'.

Typical Examples
disable (TRUE)
The current pushbutton object to which this example applies is disabled.

49

Object Commands

SECTION 6 Functions and Methods

6-1-6 Height

6-1-7 Horizontal Fill

50

PUSH 8.disable (count AND flag)

The selectable object 'PUSH_8' is disabled provided Integer point 'count’ AND
Boolean point 'flag’ return "TRUE".

Syntax
objectname.height (expression, context)
objectname.height = expression

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly

attached to an object, objectname is not required.

expression This is a value, point or an arithmetic expression
returning a new height value in pixels.

context This argument is optional and may be omitted. It defines
which part of the object is the datum, and remains static.
May be one of:

@TOP - uses object top as datum.
@CENTRE - uses object centre as datum
@BOTTOM - uses object bottom as datum
If omitted @CENTRE is assumed

Typical Examples
height (100)
or
height = 100
The height of the current object is set to 100.
LINE 1.height (stretch/offset, @top)

The height of object 'LINE_1' is changed to the value calculated by points
'stretch’ and 'offset’, keeping the top where it is.

Syntax
objectname.horizontal%$fill (expression, context)
Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is an arithmetic expression that must return a value
between 0 and 100. On return of a valid result, the fill
commences from left to right.

context This argument is optional and may be omitted. It defines
which side of the object is filled from. May be one of:

@LEFT - fill from the left
@RIGHT - fill from the right
If omitted, @LEFT is assumed

Typical Examples

Object Commands

SECTION 6 Functions and Methods

6-1-8 Move

6-1-9 Rotate

horizontal%fill (50)
The current object to which this example applies is filled by 50%.
ELLIPSE 1.horizontal%fill (GAS LEVEL, G@RIGHT)

The object 'ELLIPSE_1' is filled from the right, provided the point
'GAS_LEVEL' returns a valid result, between 0 and 100.

Syntax
objectname.move (x co-ordinate, y co-ordinate)

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

x co-ordinate The x and y co-ordinates of the origin of the object at its

y co-ordinate resultant position in pixels are specified in the form (x, y).

Points alone or as part of an arithmetic expression may
be used as a basis for this expression.

Typical Examples
move (100, 200)

The current object to which this example applies is moved to the specified
position.

POLYGON 1l.move (xpos, ypos/5)

The object 'POLYGON_1' is moved to the position specified by points 'xpos’
and 'ypos' divided by 5.

Syntax
objectname.rotate (angle, context, fixed, xcoord,
ycoord)
Remarks
Argument Description
objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.
angle The angle of rotation can range between 0 to 360 in a
clockwise direction. Points alone, or as part of an
arithmetic expression may be used as an angle.

51

Object Commands SECTION 6 Functions and Methods

Argument Description
context This argument is not required and may be omitted. May
be one of:

@TOPLEFT - rotate around top left of object
@TOPCENTRE -rotate around top centre of object
@TOPRIGHT - rotate around top right of object
@CENTRELEFT - rotate around centre left of object
@CENTRE - rotate around centre of object
@CENTRERIGHT - rotate around centre right of object
@BOTTOMLEFT - rotate around bottom left of object

@BOTTEMCENTRE - rotate around bottom centre of
object
@ BOTTOMRIGHT - rotate around bottom right of object

@USERDEFINED - user defined point specified in
xcoord and ycoord.

fixed This argument may be omitted. If this boolean value is
true, the rotation origin is fixed to the screen, even if the
object is moved. Otherwise, the rotation origin is relative
to object position.

xcoord Only required if @USERDEFINED is specified. These
ycoord integer variables specify the rotation origin in pixels

Typical Examples
rotate (45)

The current object to which this example applies is rotated by 45 .
RECTANGLE 1.rotate(tilt, QUSERDEFINED, 0, -100, 10)

The object 'RECTANGLE_1' is rotated by the value of 'tilt', about a point -100,
10 relative to the objects current position.

rotate (a * sin (b))

The current object is rotated based on the result of an arithmetic expression
involving points named 'a and 'b'".

6-1-10 Vertical Fill

Syntax
objectname.vertical%fill (expression, context)

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is an arithmetic expression that must return a value
between 0 and 100. On return of a valid result, the fill
commences from bottom to top.

context This argument may be omitted. May be one of:
@DOWN - Fill object downwards
@UP - Fill object upwards
If omitted, @UP is assumed

52

Object Commands

SECTION 6 Functions and Methods

6-1-11 Visible

6-1-12 Width

Typical Examples
vertical%fill (50)

The current object to which this example applies is filled by 50%.
ELLIPSE 1l.vertical%fill (OIL QUANTITY, @DOWN)

The object 'ELLIPSE_1" is filled provided the point 'OIL QUANTITY" returns a
valid result, between 0 and 100.

Syntax
objectname.visible (expression)

Remarks

Argument Description

objectname This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression The expression can be made up of points resulting in
"TRUE' or 'FALSE'.

Typical Examples
visible (TRUE)

The current object to which this example applies becomes visible.
POLYLINE 8.visible (count AND flag)

The object 'POLYLINE_8' is made visible provided Integer point 'count’ AND
Boolean point 'flag’ return "TRUE".

Syntax
objectname.width (expression, context)

Remarks

Argument Description

objecthame This is the name of the object. Where a script is directly
attached to an object, objectname is not required.

expression This is a value, point or an arithmetic expression
returning a new width value in pixels.

context This argument may be omitted. May be one of:

@LEFT - use left of object as datum.
@CENTRE - use centre of object as datum.
@RIGHT - use right of object as datum.

If omitted, @CENTRE is assumed.

Typical Examples
width (150)
The width of the current object is set to 150.
LINE 1l.width (squeeze/offset, QRIGHT)

The width of object 'LINE_1" is changed to the value calculated by points
'squeeze' and 'offset’, keeping the rightmost point fixed.

53

Page Commands

SECTION 6 Functions and Methods

6-2

6-2-1

54

Page Commands

Close Page

Note:

Note:

Display Page
Syntax
display ("pagename")
or
display ("pagename", X, Y)
Remarks
Argument Description
pagename This is the name of the page for display, based on its

filename without the file extension, e.g. the pagename for
CAR.PAG is simply 'CAR'".

Typical Examples
display ("CAR")
The page 'CAR.PAG' is displayed.

textpoint = "CAR"
display (textpoint)

The page 'CAR.PAG' is displayed.
display ("CAR", 100, 200)

The page 'CAR.PAG' is displayed in a custom position, 100 pixels across from
the left of the main window and 200 pixels down from the top.

Syntax
close ("pagename")
Remarks
Argument Description
pagename This is the name of the page for closure, based on its

filename without the file extension, e.g. the pagename for
CAR.PAG is simply 'CAR'. The pagename for closure
must be currently open.

The 'close' operation will cause the page to be unloaded, including all objects,
ActiveX controls and scripts. Care must be taken not to attempt to access them
after the close instruction.

Where the script containing the 'close' instruction is on the page to be closed,
this should be the last instruction in the script as it will cause the script to be
unloaded.

Typical Examples
close ("CAR")
The page 'CAR.PAG' is closed.

textpoint = "CAR"
close (textpoint)

The page 'CAR.PAG' is closed.

General Commands

SECTION 6 Functions and Methods

6-3 General Commands

6-3-1 Exponential

6-3-2 PlayOLE

Description
Mathematical function to calculate a value raised to a power.
Syntax

result = Exp (value, exponent)
Remarks
Argument Type Description
result integer |Point name to receive returned result of value
raised to the power of exponent.
value integer [Number to raise.
exponent integer |Power to raise value by.

Typical Example
MSBMask = Exp (2, 15)
In this example, 'MSBMask' is assigned the value 215, i.e. 32,768.

Description

Initiate an OLE verb or 'method' on an OLE 2 object. The verb number is
object dependent so refer to the object's documentation. This function is now
largely obsolete as most objects are nowadays ActiveX objects.

Syntax
returnstate = PlayOLE ("objectname", OLEVerbNumber)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

objectname string | The identifier of the OLE object to be played.

OLEVerbNumber |integer |The verb number has a specific meaning to the
OLE application. Typical values are:

0: specifies the action that occurs when an
end-user double clicks the object in its
container. The object determines this action
(often 'edit' or 'play’).

-1: instructs the object to show itself for editing
or viewing. Usually an alias for some other
object-defined verb.

-2: instructs an object to open itself for editing
in a window separate from that of its container.

-3: causes an object to remove its user
interface from the view. Applies only to objects
that are activated in-place.

Positive numbers designate object specific
verbs.

55

General Commands

SECTION 6 Functions and Methods

Typical Example
PlayOLE ("ole 1",0)
The object 'ole_1'is played using its primary verb.

6-3-3 DisplayPicture

6-3-4 PlaySound

6-3-5 Rand

56

Description

Reload a picture for a Picture object.

Syntax

returnstate = DisplayPicture ("objectname", filename)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

objectname string The identifier of the bitmap object with a to be
loaded and displayed

filename string The filename of the bitmap to be displayed.
This can be a constant (inside quotes) or a text
point.

Typical Example
DisplayPicture ("Bitmap 1","C:\Application\Floorplanl.
bmp")

The object "Bitmap_1" will load and display the Floorplan1 bitmap.
DisplayPicture ("Bitmap 2", txtFileName)

The object "Bitmap_2" will load and display the file name stored in txtFileName
text point.

Description

Plays a Windows .WAV sound file using the standard Windows sound channel
and Sound Card driver.

Syntax
returnstate = PlaySound("soundfile")
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
soundfile string Path of sound file to be played.

Typical Example
PlaySound("c:\noise.wav")
The soundfile "c:\noise.wav" is played.

Description
Returns a random integer, between 0 and the specified limit.
Syntax

General Commands

SECTION 6 Functions and Methods

Note:

pointname = Rand(upperlimit)

Remarks
Argument Type Description
upperlimit integer |The maximum negative or positive integer
value that the Rand function can generate.
pointhame Integer |Point that contains the integer returned from
point the Rand function.

Typical Example
randomnumber = Rand (upperlimit)

A random integer in the range 0 to upperlimit is returned and contained in the
point 'randomnumber’. Maximum upperlimit is 32767.

If 'upperlimit' is negative then the range is 0 to the negative number.

6-3-6 RunApplication

6-3-7 RunHelp

Description

Requests the operating system runs a new program. It will run in a separate
process and RunApplication does not wait for the application to be launched.
The specified filename must be executable i.e. have an extension of .EXE,
.COM or .BAT.

Syntax
returnstate = RunApplication ("executable")
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
executable string Pathname of executable file.

Typical Example
RunApplication ("c:\myprog.exe")
The executable file c:\myprog.exe is run.

Description

Invokes the Windows Help engine and loads a help file, showing a specific
topic number.

Syntax
returnstate = RunHelp ("helpfile", helpindex)
Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

helpfile string Pathname of helpfile to be run.

helpindex integer |Index into a help topic as defined by the help
file being run.

57

General Commands

SECTION 6 Functions and Methods

6-3-8 SetLanguage

6-3-9 SetNYLED

58

Typical Example
RunHelp ("c:\myhelp.hlp",0)
The helpfile c:\myhelp.hlp is run, and topic 0 shown.

Description

Change the language of text on display. This will reload the system language
file from the program folder (i.e. with a .LNG extension), and the user defined
text from the application folder (i.e. with a .USL extension). This function is the
programmatic equivalent of the user right clickihg and changing the
"Language Settings..." option.

Syntax

SetLanguage ("language name")
Remarks
Argument Type Description

language name string Name of language to set to. Must be identical
to filename of related file with ".Ing" file
extension. Standard options are English,
Czech, Danish, Deutsch, Espaniol, Finnish,
French, Italiano, Nederlands (Belgié),
Norwegian, Portugués, Slovenija and Swedish.
In addition "Default" will load the designers
default language.

Typical Example
SetLanguage ("Espafiol™)

In this example, the Spanish language files will be loaded.
SetLanguage ("Default")

In this example, the language will revert to the default specified by the
application designer.

Description

Sets the status LEDs on the NY IPC (applies to NYB and NYP only. NY5 sta-
tus LEDs are dedicated to the embedded controller status)

Syntax
returnstate = SetNYLED ID, Action
Remarks

Argument |Type Description

returnstate |Boolean |True if LED set sucessfully, otherwise false, for
example run on NY5 device or regular PC.

ID Integer |Which LED to perform action on. 0 = The Run Mode

LED, 1 = The Error LED

General Commands SECTION 6 Functions and Methods

Argument |Type Description

Action Integer |0 = Turns the LED off
1 = Turns the LED on
2 = Continously blinks the LED (250ms on / 250ms off)
3 = Continously blinks the LED (500ms on / 500ms off)

4 = Continously blinks the LED (1000ms on / 1000ms
off)

5 = Single pulse of the LED (500ms on pulse)

Typical Example
SetNYLED 0, 1
In this example, the Run mode LED is turned on.
SetNYLED 1, 2
In this example, the Error LED is continuously blinked quickly.

6-3-10 GetPerformancelnfo
Description

Read the value of a performance and diagnostics Property as shown by the
Performance Monitor and Diagnostics dialog.

Syntax
returnvalue = GetPerformancelnfo (PLC, Point, "Property
Name™)

Remarks

Argument Type Description

returnstate bool Returnstate is '1'" if the function is successful, or
'0' otherwise.

PLC string If specified, is the name of the PLC to get the
property of. If the property is not a PLC
property then specify empty string ™.

Point string If specified, is the name of the Point to get the
property of. If the property is not a Point
property then specify empty string ™.

Property Name string Name of Property to read. Must be identical to
the displayed property name. If both PLC and
Point are empty strings then the 'Summary’
property is returned.

Typical Example
GetPerformanceInfo("", "", "Performance Index")

In this example, the Summary Performance Index will be read..
GetPerformanceInfo ("", "", "Processing Time (ms)")

In this example, the CPU Time processing time will be read.
GetPerformanceInfo ("MyPLC", "", "Actual CP3S")

In this example, the actual characters per second for 'MyPLC' will be returned.
GetPerformancelInfo ("", "MyPoint", "Read Callbacks")

In this example, the read callbacks for 'MyPoint' point will be returned.

59

Communications Commands SECTION 6 Functions and Methods

6-3-11 ShutDown

Description

Closes the CX-Supervisor application.

Syntax

returnstate = ShutDown ()

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Typical Example
ShutDown ()
CX-Supervisor runtime operation is terminated.

6-4 Communications Commands

6-4-1 CloseComponent

Syntax
Returnstate = CloseComponent (ComponentName, PLCName)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

ComponentName |text A Text point or text constant containing the
name of the component to close.

PLCName text Text point or text constant containing the name
of the PLC that the component to close is
attached to.

Typical Examples
CloseComponent ("PLC Data Monitor", "MyPLC")

In this example, the PLC Data Monitor component monitoring the PLC
'MyPLC' is closed.

Component = "Performance Monitor"
PLC = "PLCOG6"

OK = CloseComponent (Component, PLC)

In this example, the Performance Monitor component monitoring the PLC
'PLCOG' is closed. 'OK'is used to determine if the action was successful.

6-4-2 EnableOLE

Syntax
returnstate = EnableOLE (pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

60

Communications Commands SECTION 6 Functions and Methods

Argument Type Description

Pointname bool A Boolean point that holds the required enable/
point disable state.

Typical Examples
EnableOLE (result)

OLE functions are enabled based on the value of point 'result'. If result is
'TRUE', then OLE is enabled. If result is 'FALSE', then OLE is disabled.

EnableOLE (TRUE)

OLE functions can also be enabled directly without using a point to hold the
desired status.

6-4-3 EnablePLC

Syntax
returnstate = EnablePLC (pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or

'0' otherwise.

Pointname bool A Boolean point that holds the required enable/

point disable state.

Typical Examples
EnablePLC (result)

PLC functions are enabled based on the value of point 'result’. If result is
'TRUE', then PLC functions are enabled. If result is 'FALSE', then they are
disabled.

EnablePLC (TRUE)

PLC functions can also be enabled directly without using a point to hold the
desired status.

6-4-4 LaunchTroubleshooter

Description
Launches the SYSMAC Gateway Event Log tool to troubleshoot device errors
(if installed).
Syntax
returnstate = LaunchTroubleshooter ()
Remarks
Argument Type Description
returnstate Boolean |True when sucessfull, otherwise False, for

example when SYSMAC Gateway has not
been installed.

Typical Examples
LaunchTroubleshooter ()

The SYSMAC Gateway Event Log tool is launched.

6-4-5 OpenComponent
Syntax

61

Point Commands SECTION 6 Functions and Methods

Returnstate = OpenComponent (ComponentName, PLCName)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

ComponentName |text A Text point or text constant containing the
name of the component to open.

PLCName text Text point or text constant containing the name
of the PLC that the component to open is
attached to.

Typical Examples
OpenComponent ("PLC Data Monitor", "MyPLC")

In this example, the PLC Data Monitor component monitoring the PLC
'MyPLC' is opened.

Component = "Performance Monitor"
PLC = "PLCOG6"
OK = OpenComponent (Component, PLC)

In this example, the Performance Monitor component monitoring the PLC
'PLCO6' is opened. 'OK'is used to determine if the action was successful.

6-5 Point Commands

6-5-1 CancelForce

Syntax
returnstate = CancelForce (pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointhname point Name of point. If the point is an array point
then all elements within the array have the
CancelForce command applied.

Typical Example

CancelForce (pointl)
The forcing of values on the point 'point1' is cancelled.
References

Refer to PLC operation manuals for a detailed description of Force Set, and
Force Reset.

6-5-2 CopyArray

Syntax
CopyArray (SourceArray, DestArray)
Remarks
Argument Type Description
SourceArray Name of point array to copy from.

62

Point Commands

SECTION 6 Functions and Methods

Note:

6-5-3 DisableGroup

6-5-4 DisablePoint

Argument Type Description

DestArray Name of point array to copy to.

Typical Example
InitArray (DestArray, 0)
First initialise 'DestArray'.

SourceArray [0] =1
SourceArray [1] = 2
SourceArray [2] = 3

Then, initialise 'SourceArray' to {1, 2, 3}.
CopyArray (SourceArray, DestArray)

Finally, copy the content of the source array 'SourceArray' to the destination
array 'DestArray’.

The two arrays do not have to be the same size as each other, for example if
'DestArray' contains 20 elements, only elements [0], [1] and [2] are set to 1, 2
and 3 respectively, the remaining elements are unchanged i.e. O's. |If
'DestArray' is smaller than 'SourceArray' i.e. it contains two elements then only
elements [0] and [1] are set to 1 and 2 respectively.

'CopyArray' accepts arrays of different type i.e. Boolean arrays can be copied
into Real arrays, the only restriction is that Text arrays cannot be copied into
numeric arrays and vice- versa.

Syntax
returnstate = DisableGroup (groupname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

groupname text Name of the group containing the points to
disable.

Typical Example
DisableGroup ("<Default>")

All points belonging to the <Default> group is disabled thus preventing values
from being read\written.

Syntax
returnstate = DisablePoint (pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
Pointname point Name of point to be disabled.

Typical Example
DisablePoint (pointl)

63

Point Commands

SECTION 6 Functions and Methods

Note:

6-5-5 EditPoint

6-5-6 EnableGroup

64

The point 'point1' is disabled thus preventing values to be read/written.
This is useful for optimisation of communications.

Syntax
EditPoint (BoolPoint, Caption, OffText, OnText)
or
EditPoint (AnalogPoint, Caption, MinValue, MaxValue,
Keyboard)
or
EditPoint (TextPoint, EchoOff, Keyboard)
Remarks
Argument Type Description
BoolPoint point Name of Boolean point to be edited
Caption Text Text Caption for Edit dialog
OffText Text Text description for Boolean state 0
OnText Text Text description for Boolean state 1
AnalogPoint point Name of Integer or Real point to be edited
MinValue Int/Real |Minimum value to be entered
MaxValue Int/Real |Maximum value to be entered
Keyboard Bool Flag set to TRUE to display the onscreen
keyboard
TextPoint point Name of Text point to be edited
EchoOff Bool Flag set to TRUE if input is not to be echoed for
security

Typical Example
EditPoint (bFlag, "Select ON or OFFE"™, "ON", "OFF")

A dialog is displayed to edit the Boolean point 'bFlag’, to "ON" or "OFF" with a
caption "Select ON or OFF".

EditPoint (nValue, "Enter a new value", 0.000000,
9999.000000, FALSE)

A dialog is displayed to edit the analogue point 'nValue', between 0 and 9999
with a caption "Enter a new value" without using the onscreen keyboard.

EditPoint (txtMessage, "Set Text to", FALSE ,FALSE)

A dialog is displayed to edit the Text point 'txtMessage', with a caption "Set
Text to", echoing the input and not displaying the onscreen keyboard.

Syntax
returnstate = EnableGroup (groupname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0" otherwise.

Point Commands

SECTION 6 Functions and Methods

6-5-7 EnablePoint

6-5-8 Force

6-5-9 ForceReset

Argument Type Description
groupname text Name of the group containing the points to
enable.

Typical Example
EnableGroup ("<Default>")

All points belonging to the '<Default>' group is enabled thus allowing values to
be read\written.

Syntax
returnstate = EnablePoint (pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
pointname point Name of point to be enabled.

Typical Example
EnablePoint (pointl)
The point 'point1' is enabled thus allowing values to be read/written.

Syntax
returnstate = Force (pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

pointname point Name of point to have force state applied. If
the point is an array point then all elements
within the array have the Force command
applied.

Typical Example
Force(point1)

The point 'point1' is locked in its current state. i.e. if it is currently set to 1 it
cannot be changed until the forced state is removed via the CancelForce
command.

Syntax
returnstate = ForceReset (pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

65

Point Commands

SECTION 6 Functions and Methods

6-5-10 ForceSet

6-5-11 GetBit

6-5-12 InitialiseArray

66

Argument Type Description

pointname point Name of point. If the point is an array point
then all elements within the array have the
ForceReset command applied.

Typical Example

ForceReset (pointl)
The Boolean point 'point1' has its value set to 'FALSE'.
References

Refer to PLC operation manuals for a detailed description of ForceSet, and
ForceReset.

Syntax

returnstate = ForceSet(pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point Name of point. If the point is an array point
then all elements within the array have the
ForceReset command applied.

Typical Example

ForceSet (pointl)
The Boolean point 'point1' has its value set to "'TRUE".
References

Refer to PLC operation manuals for a detailed description of Force Set, and
Force Reset.

Syntax
returnpoint = GetBit (pointname,bit)
Remarks
Argument Type Description
pointname Integer / | This is the name of the point to get the bit value
real from. Indirection or point value may be used.
bit integer |This specifies which bit to get the value of.
returnpoint bool This contains the return value 'TRUE' or
'FALSE'.
Typical Example
pointname = 256;
returnpoint = GetBit (pointname, 8)

The point 'returnpoint' contains "TRUE".

Syntax

Point Commands

SECTION 6 Functions and Methods

6-5-13 InputPoint

Note:

6-5-14 OutputPoint

Note:

InitArray (arrayname, value)

Remarks

Argument Type Description

arrayname Name of point array.

value Value to set all elements of the array to.

Typical Example
InitArray (MyArray, O0)
In this example, all elements of the array 'MyArray' are set to 0.

Syntax
returnstate = InputPoint (pointname, returnflag)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

pointname point The point name whose data is to be read.

returnflag point Optional Boolean point which is set to 'TRUE'
when value is returned from the PLC.

Typical Examples

InputPoint (point)
returnflag = FALSE
InputPoint (point, returnflag)

A request is made that the current value of point 'point' should be read. In the
second example, returnflag is set to 'TRUE' when the value is returned from
the PLC.

The value is not returned immediately - it is not possible to use the returned
value in the same script as the InputPoint command. Instead, the value should
be accessed from within an "On Condition" script which has an expression of
'returnflag = TRUE'".

Syntax
returnstate = OutputPoint (pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
pointname point The point to be updated.

Typical Examples
OutputPoint (result)
The point 'result' is updated with its current value.

The value of a point connected to a PLC is not be set if the point is currently in
a "forced" state.

67

PLC Commands SECTION 6 Functions and Methods

6-5-15 PointExists

Syntax
returnpoint = PointExists (pointname)
Remarks
Argument Type Description
pointname string pointnamestringThis text contains the point
name.
returnpoint point Boolean point that contains the return value.

Typical Example

PointName="Testpoint"
Exists=PointExists (PointName)

The Boolean point 'Exists' is set to 'TRUE' if a point called '"TestPoint' exists.
Note: "PointName" is a text point which can be set to any string value.

6-5-16 SetBit

Syntax
returnstate = SetBit (pointname,bit,value)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or

'0' otherwise.

pointname integer/ |This is the name of the point to set the bit for.
real Indirection or point arrays may be used.

bit point This specifies the bit to set.

value bool This specifies the value to set the bit to.

Typical Example

testpoint = 0;
SetBit (testpoint, 4, TRUE)

The point 'testpoint' contains the value 16.

6-6 PLC Commands
6-6-1 ClosePLC

Syntax
returnstate = ClosePLC ("plcname")
Remarks
Argument Type Description
returnstate bool Returnstate is '1'" if the function is successful, or
'0' otherwise.

68

PLC Commands

SECTION 6 Functions and Methods

Argument Type Description

plcname string Name of PLC to be opened. If the PLC is being
accessed using a communications component,
e.g. the Omron CX-Communications Control
this parameter should be the control name and
PLC name separated by a dot e.g.
"OMRONCXCommunicationsControl.controlPL

c".

Typical Example
ClosePLC ("controlPLC")

The PLC called controlPLC is closed. No further communications with the
PLC will take place until it is reopened.

6-6-2 DownloadPLCProgram

Note:

Note:

6-6-3 GetPLCMode

Syntax
returnstate = DownloadPLCProgram(plcname, filename,
processed)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
plcname string Name of PLC to download the program to.
filename string Name of the file on disk to download to the
PLC. If a drive and path are not specified, the
current directory is assumed, which may not be
the same as the application directory. If a
filename is specified as " the user is prompted
at runtime for a filename.
processed bool processed is set to 'TRUE' when the operation
is actually completed.

Typical Example
DownloadPLCProgram ("controlPLC", "ProgOl.bin", done)

The program stored in the file 'Prog01.bin' in the current directory is
downloaded to the PLC 'controlPLC'. Before continuing, the script waits up to
five seconds for the action to succeed.

The operation may not be complete immediately after the statement has been
executed. The processed flag 'done' is set at a later time when the operation
has been completed. Therefore, if using statements that require the upload to
be completed create an On Condition script containing the code to be
executed after the upload, with the processed flag as the expression (e.g.
'done’).

This command can only be used when the PLC is in 'STOP' mode. Refer to
chapter 6, GetPLCMode or chapter 6, SetPLCMode for further information.

Syntax
mode = GetPLCMode ("plcname")
Remarks

69

PLC Commands

SECTION 6 Functions and Methods

6-6-4 OpenPLC

Note:

Argument Type Description

mode string A Text point containing the current PLC mode.
Possible modes are 'STOP', 'DEBUG', 'RUN',
'MONITOR' and 'UNKNOWN'.

plcname string Name of PLC

Typical Example
currentmode = GetPLCMode ("controlPLC")

In this example, the current mode of the PLC 'controlPLC' is stored in the point
‘currentmode’'.

Syntax
Returnstate = OpenPLC ("plcname", processed)
Remarks

Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
plcname string Name of PLC to be opened. If the PLC is being

accessed using a communications component,
e.g. the Omron CX-Communications Control
this parameter should be the control name and
PLC name separated by a dot e.g.
"OMRONCXCommunicationsControl.controlPL
c".

processed bool Flag set to TRUE when set operation has
actually been completed.

Typical Example
OpenPLC ("controlPLC", doneopen)
The PLC called controlPLC is opened for communication.

The PLC may not be opened immediately after the statement has been
executed. The processed flag will be set at a later time when the operation
has been completed. Therefore, if using statements which require the
operation to be completed create an On Condition script containing the code to
be executed after the PLC is opened with the 'processed' flag as the
expression (this is generally more efficient).

6-6-5 PLCCommskFailed

70

Syntax
returnstate = PLCCommsFailed ("plcname")
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
plcname string Name of PLC to be checked.

Typical Example
IsFailing = PLCCommsFailed ("controlPLC")

The point IsFailing is set to true if the PLC called controlPLC is currently not
communicating. Otherwise it is set to false.

PLC Commands SECTION 6 Functions and Methods

Note:This function returns to TRUE from the time when a communications

timeout error with the named PLC occurs, until successful communication with
the PLC takes place.

6-6-6 PLCMonitor

Syntax
returnstate = PLCMonitor ("plcname")
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
plcname string Name of PLC to be monitored.

Typical Example
PLCMonitor ("controlPLC")

The monitor dialog for the PLC called controlPLC is invoked. This dialog can
be used to check PLC status, change mode, etc.

6-6-7 SetPLCMode

Syntax
returnstate = SetPLCMode ("plcname", mode, processed)

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

plcname string Name of PLC

mode string |A value for the new PLC mode. Valid modes
are 'STOP', 'DEBUG’, 'RUN' and 'MONITOR'".

processed bool processed is set to 'TRUE' when the operation
is actually completed.

Typical Examples
SetPLCMode ("controlPLC", "STOP", done)

In this example, the mode of the PLC called 'controlPLC' is changed to
"STOP".

Note: The mode may not be changed immediately after the statement has been
executed. The processed flag 'done' is set at a later time when the operation
has been completed. Therefore, if using statements that require the operation
to be completed create an On Condition script containing the code to be
executed after the mode is set, with the processed flag as the expression (e.g.

'done’).
6-6-8 SetPLCPhoneNumber
Syntax
Returnstate = SetPLCPhoneNumber ("plcname", numbertext)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
plcname string Name of PLC to change the number of.

7

Temperature Controller Commands SECTION 6 Functions and Methods

Argument Type Description

numbertext string New phone number for the PLC.

Typical Example
SetPLCPhoneNumber ("controlPLC", "01234 987654")
The phone number for the PLC is changed to the required value.

6-6-9 UploadPLCProgram

Syntax
returnstate = UploadPLCProgram (plcname, filename,
processed)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
plcname string Name of PLC to upload the program from.
filename string Name of the file on disk to upload the program
to. If a drive and path are not specified, the file
is created in the current directory, which may
not be the same as the application directory. If
a filename is specified as " the user is
prompted at runtime for a filename.
processed bool processed is set to 'TRUE' when the operation
is actually completed.

Typical Example
UploadPLCProgram ("controlPLC", "ProgOl.bin", done)

The program in the PLC 'controlPLC' is uploaded to the file 'Prog01.bin" in the
current directory. Before continuing, the script waits up to five seconds for the
action to succeed.

Note: The operation may not be complete immediately after the statement has been
executed. The processed flag 'done' is set at a later time when the operation
has been completed. Therefore, if using statements that require the upload to
be completed create an On Condition script containing the code to be
executed after the upload, with the processed flag as the expression (e.g.
'done").

Note: This command can only be used when the PLC is in 'STOP' mode. Refer to
chapter 6, GetPLCMode or chapter 6, SetPLCMode for further information.

6-7 Temperature Controller Commands

6-7-1 TCAutoTune

Syntax
returnstate = TCAutoTune (TController,mode)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
TController string This is a string representing the name of the
temperature controller.

72

Temperature Controller Commands SECTION 6 Functions and Methods

Argument Type Description

mode point This is a point depicting the mode of operation
and defines the operation to be carried out
when a TCAutoTune command is issued.

0: Indicates that the auto-tuning operation is to
be stopped.

1: This mode is supported on the E5*K and is
used to set the limit cycle of the manipulated
variable change width to 40%.

2: This is used to start the auto-tuning
operation.

Typical Example
templ = TCAutoTune ("ebak", temp2)

6-7-2 TCBackupMode

Syntax
returnstate = TCBackupMode (TController,mode)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
TController string |This is a string representing the name of the
temperature controller.
mode point This is a point depicting the mode of operation

and defines the method used by a temperature
controller for storing internal variables.

0: In this mode variables are stored in RAM and
EPROM.

1: In this mode variables are stored in RAM
only.

Typical Example
templ = TCBackupMode ("eab5k", temp2)

6-7-3 TCGetStatusParameter

Syntax
returnstate =
TCGetStatusParameter (TController,paramlID, value)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
TController string |This is a string representing the name of the
temperature controller.

73

Temperature Controller Commands

SECTION 6 Functions and Methods

Argument

Type

Description

paramID

point

This is a point depicting the required parameter
range 0 to 22:

0: ControlMode.

1: Output.

2: InputShiftDelay (Bool) E5*F, E5*X, E5*J.
3: DisplayUnit.

4: PIDConstantDisplay (Bool) E5*F, E5*X,
E5*J.

5: OutputType.

6: CoolingType.

7: Output2.

8: Alarm1.

9: Alarm2.

10: InputType (Integer) E5*F, E5*X, E5*J.
11: OperationMode.

12: BackupMode.

13: AutoTuneMode.

14: OverFlow (Bool) E5*F, E5*X, E5*J.

15: UnderFlow (Bool) E5*F, E5*X, E5*J.
16: SensorMalfunction (Bool) E5*F, E5*X,
E5*J.

17: ADConvertorFailure (Bool) E5*F, E5*X,
E5*J.

18: RAMAbnormality (Bool) E5*F, E5*X, E5*J.
19: RAMMismatch (Bool) E5*F, E5*X, E5*J.

20: StatusWordsOnly (Bool) E5*K only (TRUE
indicates valid words below).

21: Status0 (word) E5*K only.
22: Status1 (word) E5*K only.

value

point,
real or

int

The returned status parameter value. Refer to
paramID above for details.

Typical Example

templ TcGetStatusParameter ("eb5ak", temp2, temp3)
6-7-4 TCRemoteLocal

Syntax

returnstate = TCRemotelLocal (TController,mode)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
TController string | This is a string representing the name of the

temperature controller.

74

Temperature Controller Commands SECTION 6 Functions and Methods

Argument Type Description

mode point This is a point depicting the mode of operation
and defines the operational mode of a
temperature controller.

0: This specifies the temperature controller is in
remote mode.

1: This specifies that the temperature controller
is in local mode.

Typical Example
templ = TCRemotelLocal ("eb5ak", temp2)

Note: This command was previously called TCOperationalMode.
6-7-5 TCRequestStatus
Syntax
returnstate = TCRequestStatus (Tcontroller,
returnflag)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
TController string This is a string representing the name of the
temperature controller.
returnflag point This is a point depicting that the status has
been returned and is available for the
command TCGetStatusParameter.

Typical Example
templ = TCRequestStatus ("ebak", temp2)

Note: The status information is NOT returned immediately - it is not possible to
access the status information in the same script as the TCRequestStatus
command. Instead, the status information should be accessed from within an
"On Condition" script which has an expression of "returnflag == TRUE".

6-7-6 TCRspLsp

Syntax
returnstate = TCRspLsp (Tcontroller,mode)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
TController string This is a string representing the name of the
temperature controller.
mode point This is a point depicting the mode of operation

and defines the setpoint mode used by the
temperature controller.

0: This specifies remote setpoint mode.
1: This specifies local setpoint mode.

Typical Example
templ = TCRspLsp("ebak", temp2)

75

Temperature Controller Commands

SECTION 6 Functions and Methods

Note:

6-7-7 TCRunStop

This command was previously called TCSetpoint.

Syntax
returnstate = TCRunStop (TController,mode)
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
TController string This is a string representing the name of the
temperature controller.
mode point This is a point depicting the mode of operation

and defines either auto-output mode shift or
manual output mode shift.

0: This specifies manual output mode shift.
1: This specifies auto-output mode shift.

Typical Example

templ = TCRunStop ("eb5ak", temp?2)

Note:

6-7-8 TCSaveData

This command was previously called TCModeShift.

Syntax
returnstate = TCSaveData (TController)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
TController string This is a string representing the name of the
temperature controller.

Typical Example

templ = TCSaveData ("ebak", temp2)

6-7-9 TCSettingLevell

Syntax
returnstate = TCSettingLevell (TController)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
TController string | This is a string representing the name of the
temperature controller.

Typical Example

templ = TCSettingLevell ("eb5ak")

6-7-10 TCReset
Syntax

returnstate

Remarks

76

= TCReset (TController)

Alarm Commands SECTION 6 Functions and Methods

Argument Type Description

returnstate bool 1 if the function is successful otherwise O.

TController string This is a string representing the name of the
temperature controller.

Typical Example
templ = TCReset ("ebak")

6-8 Alarm Commands

6-8-1 AcknowledgeAlarm

Syntax

returnstate = AcknowledgeAlarm("alarmname")
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
alarmname string This is the identifier of the alarm.

Typical Example
AcknowledgeAlarm ("temphigh™)
The alarm 'temphigh' is acknowledged.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-2 AcknowledgeAllAlarms

Syntax
returnstate = AcknowledgeAllAlarms ()
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.

Typical Example
AcknowledgeAllAlarms ()
All alarms are acknowledged.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-3 AcknowledgelLatestAlarm

Syntax
returnstate = AcknowledgelLatestAlarm()
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.

Typical Example
AcknowledgeLatestAlarm()
The most current alarm of the highest priority is acknowledged.

77

Alarm Commands SECTION 6 Functions and Methods

References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-4 ClearAlarmHistory

Syntax
returnstate = ClearAlarmHistory()
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.

Typical Example
ClearAlarmHistory ()
The alarm history window is cleared and the log is cleared.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-5 CloseAlarmHistory

Syntax
returnstate = CloseAlarmHistory()
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.

Typical Example
CloseAlarmHistory ()
The alarm history window is closed.
References
Refer to the CX-Supervisor User Manual for details of alarms

6-8-6 CloseAlarmStatus

Syntax
returnstate = CloseAlarmStatus()
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.

Typical Example
CloseAlarmStatus ()
The current alarm status window is closed.
References
Refer to the CX-Supervisor User Manual for details of alarms.

6-8-7 DisplayAlarmHistory
Syntax
returnstate = DisplayAlarmHistory ()
Remarks

78

Alarm Commands

SECTION 6 Functions and Methods

Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
Typical Example

DisplayAlarmHistory ()

The alarm history window is displayed.

References

Refer to the CX-Supervisor User Manual for details of alarms.

6-8-8 DisplayAlarmStatus

Syntax
returnstate = DisplayAlarmStatus ()
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
Typical Example
DisplayAlarmStatus ()

The current alarm status is displayed.

References

Refer to the CX-Supervisor User Manual for details of alarms.

6-8-9 EnableAlarms

Syntax
EnableAlarms (flag, "message™)

Remarks

Argument Type Description

flag If set " TRUE' then alarm logging is enabled. If
set 'FALSE' logging is disabled.

message Text message which is recorded in the alarm
log to indicate change of status.

Typical Example

EnableAlarms

References

(TRUE,

"Alarm logging enabled")

Refer to the CX-Supervisor User Manual for details of alarms.

6-8-10 IsAlarmAcknowledged

Syntax
pointname = IsAlarmAcknowledged ("alarmname")
Remarks
Argument Type Description
pointname bool The Boolean point name to be assigned a
point value based on the test of an acknowledged
alarm.
alarmname string The identifier of the alarm.

79

File Commands

SECTION 6 Functions and Methods

6-8-11

6-9
6-9-1

80

IsAlarmActive

Typical Example
acknowledged = IsAlarmAcknowledged ("temptoohigh")

The point 'acknowledged' is assigned Boolean state "TRUE" if the
'temptoohigh' alarm is currently acknowledged. The point is assigned Boolean
state 'FALSE' if the alarm is not currently acknowledged.

References
Refer to the CX-Supervisor User Manual for details of alarms.

Syntax
pointname = IsAlarmActive ("alarmname")
Remarks
Argument Type Description
pointname bool The Boolean point name to be assigned a
point value based on the test of an active alarm.
alarmname string The identifier of the alarm.

Typical Example
active = IsAlarmActive ("temptoohigh")

The point 'active’ is assigned Boolean state "TRUE" if the 'temptoohigh' alarm
is currently active. The point is assigned Boolean state 'FALSE' if the alarm is
not currently active.

References
Refer to the CX-Supervisor User Manual for details of alarms.

File Commands

CloseFile

Note:

Syntax
returnstate = CloseFile (pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

pointname bool A Boolean point that holds the required status
of whether blank spaces should be stripped
from the file when it is closed.

Typical Examples

CloseFile(status)
The currently open file is closed. Blank spaces at the end of each line are
stripped from the file if the Boolean point 'status’ is set to 'TRUE'.

CloseFile (FALSE)
If blank spaces are stripped from the file, then it greatly reduces in size but it
takes slightly longer to close. Blank spaces should not be stripped from the file
if it is being used on a network drive by more than one system at a time.
In this example, the currently open file is closed and any blank spaces are not
stripped from the file.

File Commands

SECTION 6 Functions and Methods

6-9-2 CopyFile

6-9-3 DeleteFile

6-9-4 EditFile

Syntax
returnstate = CopyFile ("sourcename", "destname")
Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

sourcename string Pathname of file to be copied. May include a

nin

wildcard character.

destname string Pathname of destination of copy. If path name
does not exist it is created.

Typical Example
CopyFile ("c:\autoexec.bat", "c:\autoexec.old")
The file "c:\autoexec.bat" is copied to the file "c:\autoexec.old".
CopyFile ("c:\logging*.dlv", "a:\backup")

The data log files (ending in dlv) in "C:\logging" are copied to the "\backup"
directory on drive A:

Syntax

returnstate = DeleteFile("filename")

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be deleted.

Typical Example
DeleteFile ("c:\pagename.pag")
The file "c:\pagename.pag" is deleted.

Syntax
returnstate = EditFile("filename")
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
Filename string Pathname of file to be edited.

Typical Example

EditFile ("C:\report3.txt")
FileExists

Syntax
returnpoint = FileExists (filename)

Remarks

81

File Commands

SECTION 6 Functions and Methods

Note:

6-9-5 MoveFile

6-9-6 OpenFile

Note:

6-9-7 PrintFile

82

Argument Type Description
filename string This text string contains the file name.
returnpoint point Boolean point that contains the return value.

Typical Example
FileName = "TEST.TXT"
Exists = FileExists(FileName)
The Boolean point 'Exists’ is set to 'TRUE' if a file called 'CATEST.TXT' exists.
"FileName" is a text point which can be set to any string value.

Syntax
returnstate = MoveFile ("sourcename", "destname")

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

sourcename string Pathname of file to be moved.

destname string Pathname of destination of move.

Typical Example
MoveFile ("c:\autoexec.bat", "c:\autoexec.old")

The file "c:\autoexec.bat" is moved to the file "c:\autoexec.old".

Syntax
returnstate = OpenFile("filename")
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
Filename string Pathname of file to be opened.

Typical Example
OpenFile ("c:\filename")

The file "c:\filename.csf" is opened and able to be accessed by the Read() and
Write() script commands. Only one file can be open at a time. A file is created
if it doesn't already exist. Files can be shared (for instance located on a
network drive, and accessed by several running CX-Supervisor applications
simultaneously - this can be used for data exchange).

An extension ".csf" will always be added to the filename so it must not be
specifed as part of the argument.

Syntax
returnstate = PrintFile ("filename")
Remarks

File Commands SECTION 6 Functions and Methods

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Filename string Pathname of file to be printed.

Typical Example
PrintFile ("c:\autoexec.bat")
The file "c:\autoexec.bat" is sent to the currently configured printer.

Script commands that have textual arguments can take either literal strings
within quotes or text points.

Note: CX-Supervisor uses the OLE registration information (file extension
associations) to decide how to print a file. It invokes the parent application
associated with a particular file extension, instructing the application to start
minimised and passing the "print" command. For example, if the file extension
.Ixt is associated with Notepad, then Notepad is invoked to print the file.

6-9-8 Read
Syntax
returnstate = Read(RecordId, pointname, ...)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Recordld integer |An index into the file.

Pointname point Name(s) of point(s) to be updated with the data
read from the open file.

Typical Examples
Read (1, value)

The point 'value' is loaded with the value read from the currently open file
using the value of 1 as an index into the file.

ReadOK = Read (indexno, valuel, value2, value3)

The points 'value1', 'value2', 'value' are loaded using the value of indexno as
an index into the file. Pass or fail status is stored in 'ReadOK".

Note: It is advisable to use a Recordld less than 1024 whenever possible, in order to
optimise file access time (records 0 to 1023 are cached).

6-9-9 ReadMessage

Syntax
returnstate = ReadMessage ("filename", offset,
textpoint, noofchars)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or

'0' otherwise.
Filename string Pathname of file to be read.

83

File Commands

SECTION 6 Functions and Methods

Note:

6-9-10 SelectFile

84

Argument Type Description
Offset integer |An offset from the beginning of the file (in
characters) indicating where to start reading
from.
Textpoint text The text point which holds the characters read
point from the file.
Noofchars integer |The number of characters to read from the file.

Typical Example

ReadMessage ("C:\CX-SUPERVISOR\TESTFILE.TXT", 0,
TextPoint, 20)

The first 20 characters are be read from the file "C:\CX-
SUPERVISOR\TESTFILE.TXT" and stored in the point 'TextPoint'.

Text points can hold up to 256 characters therefore a maximum of 256
characters can be read from the file.

Syntax
filename = SelectFile (filter, path)
Remarks

Argument Type Description

Filename Text string returned. Contains fully qualified
filename including drive and path if OK was
selected from OpenFile comms dialog,
otherwise contains empty string.

Filter string Optional argument. If omitted, will show all
files. This argument must be supplied if path is
specified i.e. set to ™. Specifies the filter string
used by the 'Files of type' list. The string
should contain 1 or more filters separated with
a'|' (pipe) character and end with 2 characters
i.e.'||'. Each filter should have some user text
and 1 or more file specs separated with a
semicolon. No spaces should be used, except
within the user text.

Path string Optional argument. Specifies the path to show
initially. If omitted, the dialog shows the current
working directory.

Typical Example
TFile = SelectFile()
The 'File Open’ dialog will be displayed, showing all files in the current working
directory. The users choice will be stored in tFile.
TFile = SelectFile ("Text Files (*.txt)|*.txt]||")
The 'File Open' dialog will be displayed, showing just files with a .txt extension
in the current working directory.
TFile = SelectFile ("Text Files (*.txt;
*.csv) | *.txt;*.csv] ")

The 'File Open’ dialog will be displayed, showing files with either a .txt or .csv
extension in the current working directory.

File Commands SECTION 6 Functions and Methods

TFile = SelectFile ("Text Files (*.txt;
*.csv) | *.txt; *.csv|Document Files (*.doc) |*.doc||")

In this example, the 'Files of type' filter has 2 choices: one to show text files
(i.e. both .txt and .csv files), and one to show document files (just .doc files).

TFile = SelectFile("", "C:\WINDOWS")

The 'File Open' dialog will be displayed, showing all files in the
"C:\WINDOWS" directory.

6-9-11 Write

Syntax
returnstate = Write (RecordId, pointname, ...)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

Recordld integer |An index into the file.

Pointname point Name(s) of point(s) containing data to write to
the open file.

Typical Examples
WroteOK = Write (indexno, $Second)

The point '$Second' is written to the currently open file using the value of
indexno as an index into the file. Pass or fail status is stored in "WroteOK'.

Write (2, $Second, S$Minute, S$Hour)

The points '$Second’, '$Minute', '$Hour' are written to the currently open file
using the value 2 as an index into the file.

Note:lt is advisable to use a Recordld less than 1024 whenever possible, in
order to optimise file access time (records 0 to 1023 are cached).

6-9-12 WriteMessage

Syntax
returnstate = WriteMessage ("filename", offset, "text",
linefeed)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
filename string Pathname of file to be written.
offset integer |An offset from the beginning of the file (in
characters) indicating where to start writing. If
the offset is -1 then the message is appended
to the end of the file.
text string The text to be written into the file.
linefeed bool A flag to indicate a carriage return and line feed
should be appended.

85

Recipe Commands

SECTION 6 Functions and Methods

Note:

Typical Example
WriteMessage ("C:\CX-SUPERVISOR\TESTFILE.TXT", 0,
"Hello World", TRUE)

The text 'Hello World' is written at the start of the 'C:\CX-
SUPERVISOR\TESTFILE.TXT' file and a carriage return and line feed is
appended which moves and subsequent text to the start of the next line.
When the text is written into the file it overwrites any existing text that may exist
at this location.

6-10 Recipe Commands

6-10-1 DisplayRecipes

Syntax
returnstate = DisplayRecipes/()
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
Typical Example
DisplayRecipes ()
The current recipes is displayed.
References

Refer to the CX-Supervisor User Manual for details of recipes.

6-10-2 DownloadRecipe

Syntax
returnstate = DownloadRecipe ("recipename")
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
recipename string The name of the recipe to be downloaded.

Typical Example
DownloadRecipe ("recipel")
The recipe 'recipe1' is downloaded.
References
Refer to the CX-Supervisor User Manual for details of recipes.

6-10-3 UploadRecipe

86

Syntax
returnstate = UploadRecipe ("recipename", processed)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Report Commands

SECTION 6 Functions and Methods

Argument Type Description

recipename string The name of the recipe to be uploaded.

processed bool Flag set to true when operation has been
completed.

Typical Example
UploadRecipe ("recipel", done)

The recipe 'recipe1’ is uploaded, and point 'done' is set True when the upload
is complete.

References
Refer to the CX-Supervisor User Manual for details of recipes.

6-11 Report Commands

6-11-1 GenerateReport

6-11-2 PrintReport

Syntax

returnstate =
GenerateReport (ReportTemplateFile, ReportOutputFile)

Remarks

Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

ReportTemplateFile |string Pathname of the report template file.

ReportOutputFile |string Pathname of the report output file.

Typical Example
GenerateReport ("report3.txt", "output.txt")

The ReportTemplateFile report3.txt contains a predefined set of point names
and text laid out exactly as the report reader likes to view them. The point
names contained within enclosing characters are the CX-Supervisor names
for the data that is required in the report.

The enclosing characters can be changed in the Project/Runtime Setting/
Report setting dialog box, but once set must be fixed for all reports generated
by the project.

The template file can be written using any ASCII text editor, for instance a Text
file (.TXT), a Rich Text file (.RTF) or a Hypertext file ((HTML).

The report template is processed, dynamically replacing the point names with
current values, and saved as output.txt.

Syntax
returnstate = Printreport (ReportTemplateFile)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or

'0' otherwise.

ReportTemplateFile |string Pathname of the report template file.

87

Text Commands SECTION 6 Functions and Methods

Argument Type Description

ReportOutputFile |string Pathname of the report output file.

Typical Example
PrintReport ("report3.txt")

The report template is processed, dynamically replacing the point names with
current values, and printed to the default Windows printer.

6-11-3 ViewReport

Syntax
returnstate = ViewReport (ReportTemplateFile)
Remarks
Argument Type Description
returnstate bool Returnstate is '1'" if the function is successful, or

'0' otherwise.

ReportTemplateFile|string Pathname of the report template file.

Typical Example
ViewReport ("report3.txt")

6-12 Text Commands

6-12-1 BCD
Syntax
result = BCD (value)
Remarks
Argument Type Description
Value Number to convert to Binary Coded Decimal
(BCD).
result String containing BCD representation of value.

Typical Example
BCDStr = BCD(39)
In this example, 'BCDstr' contains '00111001".

6-12-2 Bin

Syntax
result = Bin (value)
Remarks
Argument Type Description
Value Number to be converted to a binary number.
result String containing binary representation of
value.

Typical Example
BStr = Bin (20)
In this example, 'Bstr' contains '10100".

88

Text Commands

SECTION 6 Functions and Methods

6-12-3 Chr

6-12-4 FormatText

Syntax
result = Chr (value)

Remarks

Argument Type Description

Value Extended ASCII value to convert to a
character.

result String containing single character
representation of value.

Typical Example
Char = Chr (65)
In this example, 'Char' contains 'A'.

Syntax
textpoint = FormatText ("formattext", expression, ...)
Remarks
Argument Type Description
textpoint text A text point which holds the formatted text.
point
formattext string | The text (with appropriate formatting
characters) that the result expression is
inserted into.
expression Integer / | The value(s) or expression(s) that is inserted
real into formattext.
Typical Examples
TextPoint = FormatText ("Boiler temperature 1is %1d

degrees.", BoilerTemp)
The value of the 'BoilerTemp' point is inserted into the specified text at the
position marked by the formatting characters (%Ild) and then stored in the point
"TextPoint'".
If the value of 'BoilerTemp' was 57 then the resultant text that is stored in
"TextPoint' is as follows:

"Boiler temperature is 57 degrees."

TextPoint = FormatText ("Boiler %1d temperature is %1d

degrees.”", BoilerNo, BoilerTemp)
The value of 'BoilerNo' point is inserted at the first '%Id' marker and the value
of the 'BoilerTemp' point is inserted at the second '%Id' marker and the
resulting string is stored in the point "TextPoint'.

If the value of 'BoilerNo' was 7 and the value of 'BoilerTemp' was 43 then the
resultant text stored in the 'TextPoint' is as follows:

"Boiler 7 temperature is 43 degrees."

89

Text Commands SECTION 6 Functions and Methods

Note: The formatting characters are standard 'C' formatting characters (as used by
the C-language sprintf function). Some commonly used types are:

* %Id. Insert integer value;

* %f. Insert decimal value. Prefix with decimal point and number to control
position (for instance '%.2f' for 2 decimal places);

* %s. Insert string;

* %IX. Insert hexadecimal value (upper case HEX characters, for instance
'FFFF');

* %Ix. Insert hexadecimal value (lower case HEX characters, for instance

* %c. Insert character (can be used to convert value to character, for
instance to insert control character).

With the text left aligned, and with a width field (for instance '%-6ld' to insert a
value left aligned with a field 6 characters wide).

References

More complex expressions (for instance controlling justification, decimal
places, number base, etc.) are also possible. Refer to any C language
reference book for full details of the format used by the 'sprintf' function.

6-12-5 GetTextLength

Syntax
value = GetTextLength (textpoint)

Remarks

Argument Type Description

textpoint text This is the point which has its text length
point counted.

returnpoint Integer / |This is the point that holds the return value.
real

Typical Example

textpoint = "Hello World"
count = GetTextLength (textpoint)

The number of characters in 'textpoint' is counted and the point 'count' is set to

the value 11.
6-12-6 Hex
Syntax
result = Hex (value)
Remarks
Argument Type Description
Value Number to be converted to a Hex number.
Result String containing Hex representation of value.

Typical Example
HStr = Hex (44)
In this example, 'Hstr' contains '2C'.

90

Text Commands SECTION 6 Functions and Methods

6-12-7 Left

Syntax
lefttext = Left (textpoint,noofchars)
Remarks
Argument Type Description
textpoint text The text point containing the string that is to be
manipulated.
noofchars integer | The number of characters to extract from the
start of the string.
lefttext text Text point containing the specified range of
characters.
Typical Example
textpoint = "abcdefgh"

lefttext = Left (textpoint, 3)
The text point 'lefttext’ contains the string 'abc'.

6-12-8 Message

Syntax
Message ("message")
Remarks
Argument Type Description
message string Contains the text string that is displayed in the
message box.

Typical Example
Message ("this is a message")

The message 'this is a message' is displayed in a Message Box.

6-12-9 Mid

Syntax
midtext = Mid(textpoint,offset,noofchars)
Remarks
Argument Type Description
textpoint text The text point containing the string that is to be
manipulated.
offset integer |The zero based index of the first character in
the string that is to be included in the extract.
noofchars integer |The number of characters to extract from the
string.
midtext text Text point containing the specified range of
characters.
Typical Example
textpoint = "abcdefgh"

midtext = Mid(textpoint,3,2)
The text point 'midtext' contains the string 'de’.

91

Text Commands

SECTION 6 Functions and Methods

6-12-10 PrintMessage
Syntax
PrintMessage ("message")
Remarks
Argument Type Description
message string Contains the text string that is sent to the
printer.
Typical Example
PrintMessage ("Print this message")

6-12-11 Right

6-12-12 TextToValue

92

The message 'print this message' is printed to the configured 'Alarm/message
printer', queued if operating in page mode, or printing has been disabled by
the EnablePrinting command.

References

Refer to the CX-Supervisor User Manual for further details to configure the
'Alarm/message printer'.

Syntax
righttext = Right (textpoint,noofchars)
Remarks
Argument Type Description
textpoint text The text point containing the string that is to be
manipulated.
noofchars integer | The number of characters to extract from the
string.
righttext text Text point containing the specified range of
characters.
Typical Example
textpoint = "abcdefgh"

righttext = Right (textpoint, 3)
The text point 'righttext' contains the string 'fgh'.

Syntax
valuepoint = TextToValue (textpoint)

Remarks

Argument Type Description

textpoint text The text point containing the string that is to be
converted into a number.

valuepoint integer |A point containing the value returned after
conversion from a string.

Typical Examples

textpoint = "10"
valuepoint = TextToValue (textpoint)

The value 10 is assigned to the point 'valuepoint'.

Event/Error Commands SECTION 6 Functions and Methods

textpoint = "10.34"
realpoint = TextToValue (textpoint)
The real value 10.34 is assigned to the real point 'realpoint'.
6-12-13 ValueToText
Syntax
textpoint = ValueToText (value)
Remarks
Argument Type Description
value integer |The number that is to be placed into the
textpoint. A point name is also a valid
parameter.
textpoint text A text point containing the value converted into
point a string.

Typical Examples
textpoint = ValueToText (10)
The value 10 is put into a string and assigned to the text point 'textpoint'.

value = 10
textpoint = ValueToText (value)

This has the same effect as the previous example.

6-13 Event/Error Commands

6-13-1 ClearErrorLog
Syntax
ClearErrorLog ()
Typical Example
ClearErrorLog ()
The error list is cleared and the log deleted.

6-13-2 CloseErrorLog

Syntax
returnstate = CloseErrorLog ()
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Typical Example
CloseErrorLog()
The list of all currently logged errors is closed.

6-13-3 DisplayErrorLog
Syntax
returnstate = DisplayErrorLog ()

Remarks

93

Event/Error Commands

SECTION 6 Functions and Methods

Description

Returnstate is '1' if the function is successful, or
'0' otherwise.

Argument Type

returnstate bool

Typical Example
DisplayErrorLog ()

A list of all currently logged errors is displayed in a dialog.

6-13-4 EnableErrorLogging

Syntax
returnstate = EnableErrorLogging (pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
pointname bool A Boolean point.

Typical Example

EnableErrorLogging (flag)

Error Logging is enabled based on the Boolean point 'flag’. If 'flag' is ' TRUE',
then error logging is enabled. If 'flag’ is false, then error logging is disabled.

6-13-5 LogError

Syntax
returnstate = LogError ("message", priority)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

message string Contains the text string that is displayed in the
Error Log.

priority integer |Priority assigned to the error.
0 - low
1 - medium
2 - high

Typical Example

LogError ("This is an error", 1)

The message 'This is an error' appears as a medium priority error in the error

log.

6-13-6 LogEvent
Syntax

returnstate

Remarks

94

= LogEvent ("message")

Printer Commands

SECTION 6 Functions and Methods

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

message string Contains the text string that is displayed in the
Error Log.

Typical Example
LogEvent ("this is an event")

The message 'this is an event' appears as an event in the error log.

6-14 Printer Commands

6-14-1 ClearSpoolQueue

Syntax
returnstate = ClearSpoolQueue ()
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Typical Example
ClearSpoolQueue ()

Any messages (typically printed alarms) that are queued up waiting to be sent
to the CX-Supervisor Alarm/Message printer is discarded.

6-14-2 EnablePrinting

Syntax
returnstate = EnablePrinting(flag)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or

'0' otherwise.

flag bool 0 to disable, 1 to enable.

Typical Example
EnablePrinting (FALSE) - Disables printing
EnablePrinting (TRUE) - Enables printing

While alarm printing is disabled, any new messages are stored but not printed.
When alarm printing is re-enabled, any pending messages are printed (if in
line mode) or added to the current page (if in page mode).

6-14-3 PrintActivePage

Syntax
returnstate = PrintActivePage (flagqg)

Remarks

95

Printer Command's

SECTION 6 Functions and Methods

6-14-4 PrintPage

6-14-5 PrintScreen

96

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

flag bool Flag is to indicate whether the print setup
dialog is to be displayed before printing.

Typical Example
PrintActivePage (TRUE)

The currently active page is sent to the printer. The flag "'TRUE' indicates that
the print dialog is displayed. 'FALSE' causes the print dialog not to be shown.

Syntax
returnstate = PrintPage ("pagename", flag,
printheaderfooter)
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
pagename string The name of the page to be printed.
flag bool Flag to indicate whether the print setup dialog
is to be displayed before printing.
printheaderfooter |bool Optional. Flag to control if printout details are
included in a header and footer.

Typical Example

PrintPage ("pagel", TRUE)
The CX-Supervisor page is sent to the printer. The flag 'TRUE' indicates that
the print dialog is displayed first to allow for printer configuration. If 'FALSE'
was specified instead of 'TRUE' then the print dialog is not shown, the page is
just printed.

Syntax
returnstate = PrintScreen(flag)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

flag bool Flag to indicate whether the print setup dialog
is to be displayed before printing.

Typical Example
PrintScreen (FALSE)

All CX-Supervisor pages currently on view is printed. The flag 'FALSE'
indicates that the print dialog is not displayed. A flag of 'TRUE' causes the
print dialog to be shown, allowing the user to configure or choose the printer.

Security Commands

SECTION 6 Functions and Methods

6-14-6 PrintSpoolQueue

Syntax
returnstate = PrintspoolQueue ()
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Typical Example
PrintSpoolQueue

Any message (typically printed alarms) that are queued up waiting to be sent
to the CX-Supervisor Alarm/Message printer is printed immediately.

6-15 Security Commands

6-15-1 Login

6-15-2 Logout

Syntax
returnstate = Login (username, password)

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

username text Optional parameter with name of user to login.
If omitted, the login dialog will be shown.

password text Optional parameter with password for user to
login. If used, username must be specified,
even if only empty i.e. ™. If omitted, the login
dialog will be shown.

Typical Examples
Login ()

The Login dialog is displayed for user entry.
Login ("Designer", "Designer")

The default 'Designer’ user is logged in automatically using matching
password.

References
Refer to the CX-Supervisor User Manual for details of Login.

Syntax
returnstate = Logout ()
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Typical Example
Logout ()

97

Data Logging Commands SECTION 6 Functions and Methods

6-15-3 SetupUsers

The user is logged out.
References

Refer to the CX-Supervisor User Manual for details of Logout.

Syntax
returnstate = SetupUsers ()
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
Typical Example
SetupUsers ()
The Setup Users dialog is displayed for user entry.
References

Refer to the CX-Supervisor User Manual for details of setting and modifying
user details.

6-15-4 ChangeUserPassword

Syntax

ChangeUserPassword ("username", "old", "new")
Remarks

Argument Type Description

username string user whose password should be changed.
old string the existing password.

new string the new password.

Typical Example
ChangeUserPassword ("Fred Smith","fredl", "fred2")

The ChangeUserPassword would change ‘Fred Smith’'s’ Windows Logon
password from ‘fred1’ to ‘fred2’.

References

Refer to the CX-Supervisor User Manual for details of setting and modifying
user details.

6-16 Data Logging Commands

6-16-1 AuditPoint

98

Syntax
AuditPoint ("pointname")
Remarks
Argument Type Description
pointname string Name of the point to be logged into the CFR
database.

Typical Example

Data Logging Commands SECTION 6 Functions and Methods

AuditPoint ("MyInteger")
This command will cause the value of ‘Mylinteger’ to be logged into the CFR

database.
6-16-2 ClearLogFile
Syntax
ClearLogFile ("datasetname")
Remarks
Argument Type Description
datasetname string Name of Data Set to clear as text point or
constant.

Typical Example
ClearLogFile ("Process 1")

This command will clear all data from the active (latest) log file for this data set,
and add a 'Clear Event' indicator.

6-16-3 CloselLogFile

Syntax
returnstate = CloseLogFile ("datasetname")
or
returnstate = CloselLogFile ("databaselink")
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.
datasetname text Name of Data Set to close as text point or
constant.
databaselink text Name of Database link to close as text point or
constant.

Typical Example
CloselogFile ("Process 1")

This command will close the active log file for the data set. Logging for this
data set is automatically stopped.

6-16-4 CloselLogView

Syntax
CloselogView ("datasetname")
Remarks
Argument Type Description
datasetname text Name of Data Set to close as text point or
constant.

Typical Example
CloseLogView ("Process 1")

This command will close the Data Log Viewer, which is displaying the named
data set.

99

Data Logging Commands SECTION 6 Functions and Methods

6-16-5 ExportAndViewlLog
Syntax

ExportAndViewLog ("datasetname", "item list",
"format", file, outputfile)

or
ExportAndViewlLog ("datasetname”, TextArray, "format", file, outputfile)
Remarks

Argument Type Description

datasetname text Name of Data Set to close as text point or
constant.

item list string List of Iltems and/or Groups within the data set
to export, separated by commas. Alternatively
use "*" to export all.

TextArray string A text point, which has an array size specified
array as 1 or more elements . Each element holds
an Item or Group name.

format string Either "CSV" or "Text" to specify output format.
May include suffix '-' followed by:

B to exclude break information

D to exclude the log date

T to exclude the log time

M to exclude to log milliseconds

G to not Group 'On Change' data together

file integer |Number of file to export where 0 is the latest
(active) file, 1 is the previous file etc.

outputfile string File name for output file. May include full path,
which will be created automatically if it does not
exist.

All these arguments are optional, and may be omitted provided there are no
further arguments i.e. to specify the 'format’, 'datasetname' and 'item list' must
be included but 'file' and 'output’ may be omitted.

Typical Examples
ExportAndViewLog ("Balloon™"™, "*")

or
ExportAndViewLog ("Balloon",
"Altitude, Fuel,Burning,Lift,Group 1", "CSV-BDTM", O,
"output")
or
ItemList[0] = "Altitude"
ItemList[1] = "Fuel"
ItemList[2] = "Burning"
ItemList[3] = "List"
ItemList[4] = "Group 1"
ExportAndViewLog ("Balloon", ItemList, "CSV-BDTM", O,
"output")

100

Data Logging Commands SECTION 6 Functions and Methods

6-16-6 ExportLog

All these commands will export all the data in the specified file, for the named
data set to the named output file, in the format specified (as per ExportLog). It
then launches an appropriate viewer to display the file, using the Windows file
associations.

Syntax
ExportLog ("datasetname", "item list", "format", file,
outputfile)
or
ExportLog ("datasetname", TextArray, "format", file,
outputfile)
Remarks
Argument Type Description
datasetname text Name of Data Set to close as text point or
constant.
item list string List of Items and/or Groups within the data set
to export, separated by commas. Alternatively
use "*" to export all.
TextArray string | A text point, which has an array size specified
array as 1 or more elements . Each element holds
an Item or Group name.
format string Either "CSV" or "Text" to specify output format.
May include suffix -' followed by:
B to exclude break information
D to exclude the log date
T to exclude the log time
M to exclude to log milliseconds
G to not Group 'On Change' data together
file integer |Number of file to export where 0 is the latest
(active) file, 1 is the previous file etc.
outputfile string File name for output file. May include full path,
which will be created automatically if it does not
exist.

All these arguments are optional, and may be omitted provided there are no
further arguments i.e. to specify the 'format’, 'datasetname' and 'item list' must
be included but 'file' and 'output’ may be omitted.

Typical Examples
ExportLog ("Balloon", "*")

or
ExportLog ("Balloon",
"Altitude, Fuel,Burning,Lift,Group 1" "CSV-BDTM", O,
"output")
or
ItemList[0] = "Altitude"
ItemList([1l] = "Fuel"
ItemList[2] = "Burning"
ItemList[3] = "List"

101

Data Logging Commands SECTION 6 Functions and Methods

ItemList[4] = "Group 1"
ExportAndViewLog ("Balloon", ItemList, "CSV-BDTM", O,
"output")

All these commands will export all the data in the specified file, for the named
data set to the named output file, in the format specified.

6-16-7 OpenLogFile

Syntax
returnstate = OpenlLogFile ("datasetname")
or
returnstate = OpenlogFile ("databaselink")
Remarks
Argument Type Description
returnstate bool Optional. 1 if the function is successful
otherwise 0
datasethame text Name of Data Set to open as text point or
constant.
databaselink text Name of Database link to open as text point or
constant.

Typical Example
OpenLogFile ("Balloon")

This command will open the log file, ready to start logging. As the function is
disk intensive it should not be called frequently.

6-16-8 OpenLogView

Syntax
OpenLogView ("datasetname", "item list", sessionfile)
or
OpenLogView ("datasetname", TextArray, sessionfile)
Remarks
Argument Type Description
datasetname text Name of Data Set to open as text point or
constant.
item list string List of Iltems and/or Groups within the data set
to view, separated by commas
TextArray string A text point, which has an array size specified
array as 1 or more elements. Each element holds an
Iltem or Group name.
sessionfile string Optional filename of session information file.
The Data Log Viewer is shown with the session
settings (e.g. Window position, size, colours,
grid options etc. stored in the session file. If
omitted, the previous settings are used.

Typical Example

OpenLogView ("Balloon",
"Altitude, Fuel,Burning,Lift,Group 1")

102

Data Logging Commands SECTION 6 Functions and Methods

or
ItemList [0] = "Altitude"
ItemList [1] = "Fuel"
ITtemList [2] = "Burning"
ItemList [3] = "Lift"
ITtemList [4] = "Group 1"

OpenLogView ("Balloon", ItemList)

Both these commands will open the Data Log Viewer, and load the Balloon log
file, and show the named items.

OpenLogView ("Balloon", ItemList, "C:\Program
Files\Omron\CX-SUPERVISOR\App\MySessionInfo.txt")

This command will open the Data Log Viewer and Balloon log file as above but
the Data Log Viewer will always appear in the same position, and with the
same settings - not as it was last shown.

6-16-9 StartAuditTrail
Syntax
returnstate = StartAuditTrail (ErrorFlag)

Remarks

Argument Type Description

returnstate bool Optional. 1 if the function is successful and the
audit trail database is opened and logging
started. Otherwise it returns 0.

ErrorFlag bool Optional. At some period of time after
execution, this flag may be set to 1 if an error
occurs.

Typical Example
StartAuditTrail (AuditError)

This command will start audit trail logging of all items configured to be logged
into the audit trail database, based on the chosen target (i.e. Microsoft Access
or SQL). By default, data will be appended to the audit trail database if one
already exists, otherwise a new database will be created. The ‘Audit Trail
Configuration’ dialog can be used to configure how audit trail data is logged to
a Microsoft Access or SQL database.

If at any time any audit instruction fails, for example the remote database
becomes disconnected, then “AuditError” is set true and can be used to test or
trigger other actions. If AuditError is reset to False then it will automatically be
set True again on any further auditing error.

6-16-10 StopAuditTrail
Syntax

StopAuditTrail ()

Typical Example
StopAuditTrail ()

This command will stop the current audit trail logging and close the audit trail
database.

103

Database Commands SECTION 6 Functions and Methods

6-16-11 StartLogging
Syntax

returnstate StartLogging ("datasetname")
or

returnstate = StartlLogging ("databaselink")

Remarks

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

datasetname text Name of Data Set to open as text point or
constant.

databaselink text Name of Database link to start logging as text
point or constant.

Typical Example
StartLogging ("Process 1")

This command will start logging of all items in the named data set. If the file is
closed it will be automatically opened.

6-16-12 StopLogging
Syntax
returnstate = Stoplogging ("datasetname")
or
returnstate = Stoplogging("databaselink")
Remarks
Argument Type Description
returnstate bool Optional. 1 if the function is successful
otherwise 0
datasethname text Name of Data Set to open as text point or
constant.
databaselink text Name of Database link to stop logging as text
point or constant.

Typical Example
StopLogging ("Process 1")
This command will stop logging of all items in the named data set.

6-17 Database Commands

6-17-1 DBAddNew

Description

Adds a new record to a Recordset. This function will fail if the Recordset is
opened with a lock of 'Read Only'.

Syntax
returnstate = DBAddNew (level)
Remarks

104

Database Commands

SECTION 6 Functions and Methods

Note:

Note:

Note:

Note:

6-17-2 DBClose

Argument Type Description

returnstate bool Optional. 1 if the function is successful
otherwise 0

level text A text point or constant specifying the
connection level. This should be a field or
recordset level.

Typical Examples
Result = DBAddNew ("Northwind.Order Details")

Using a Recordset connection level, a new record is added with values from
all fields associated with a property type 'Add'. Point 'Result’ is set true if this
was successful.

DBAddNew
DBAddNew

"Northwind.Order Details.OrderID")
"Northwind.Order Details.ProductID")
DBAddNew ("Northwind.Order Details.Quantity")
DBAddNew ("Northwind.Order Details.UnitPrice")
DBUpdate ("Northwind.Order Details")

Using a Field connection level, each required field is added to the new record
using multiple calls to DBAddNew(). When the record is complete, it is added
by calling the DBUpdate() function

To use DBAddNew() with a Recordset level the Recordset must be configured
to perform this type of operation i.e. it will need to contain fields for any primary
keys and 'non null' values required to create a new record. When used at
Recordset level all fields associated with the Recordset with property type
'Add' are added (as if calling DBAddNew()) and the record is updated (as if
calling DBUpdate()). Points associated with the 'Add' property can be array
points, thus enabling you to add multiple records in one operation.

(
(
(
(

When using a Field level connection, the operation may be cancelled at any
stage before the DBUpdate() function is called by calling the DBExecute()
command "CancelUpdate".

Only Fields with a property type of 'Add' can be added to a Recordset. The
value(s) of the associated points at the time DBUpdate() is called will be used
to create the record.

Depending on the ADO provider, the added record may not be visible until the
Recordset is requeried. See DBExecute, parameter Requery for more
information.

Description

Closes a Connection or Recordset. Closing a Connection will automatically
close all recordsets associated with it. Recordsets can be closed in isolation
by selecting the appropriate level.

Syntax
returnstate = DBClose (level)
Remarks
Argument Type Description
returnstate bool Optional. 1 if the function is successful
otherwise 0

105

Database Commands

SECTION 6 Functions and Methods

6-17-3 DBDelete

6-17-4 DBExecute

106

Argument Type Description

level text A text point or constant specifying the
connection level. This should be a field or
recordset level.

Typical Examples

Result = DBClose ("Northwind.Order Details")
Closes the 'Order Details' Recordset

Result = DBClose ("Northwind")

Closes the connection to the Northwind database, and also any Recordsets
which may be open.

Description

Deletes the specified number of records from the current record position. This
function works only at the Recordset level. This function will fail if the
Recordset is opened with a lock of 'Read Only'.

Syntax
returnstate = DBDelete(level, quantity)

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This should be a field or
recordset level.

quantity int Number of records to delete.

Typical Examples
Result = DBDelete("Northwind.Order Details", 10)
Delete the next 10 records in the recordset

DBMove ("First")
Result = DBDelete("Northwind.Order Details", 10)

Delete the first 10 records.

Description

The DBExecute function allows the execution of miscellaneous commands
and allows for future expansion by supporting new commands without the
need to create more new DB functions.

Syntax
return = DBExecute(level, command, parameter)
Remarks
Argument Type Description
return 1 if the function is successful otherwise 0

except for "Find" and "FindNext" commands
which return the record number if found or if
not, set the current record to EOF and return -

1.

Database Commands

SECTION 6 Functions and Methods

Argument Type Description

level text A text point or constant specifying the
connection level, which depends on the
command specified.

command text Command to execute. May be one of the
commands listed below.

parameter text Command parameter only required with certain
commands. For "Connection", this parameter
should hold the new connection string. For
"Find" and "FindNext" this parameter should be
the search criteria. For "Source" this is the
Recordset source. For "Filter" this is the
Recordset filter.

Typical Examples

Pos = DBExecute ("Northwind.Order Details", "Find",
"UnitPrice > 14.00")

Find the next record satisfying the specified criteria, starting from the current
position. Valid search criteria include: "ProductName LIKE 'G* " wildcard
search finds all records where ProductName starts with 'G', "Quantity = 5",
"Price >= 6.99". Only single search values are allowed, using multiple values
with 'AND’ or 'OR" will fail.

DBExecute ("Connectionl.Recordsetl", "Source",
"Table2")

Modify the Recordsets source to open a different table than configured.
DBExecute ("Northwind.Shippers", "Filter",
"CompanyName = 'United Package'")

Apply a filter to display only records with a company name 'United Package'
DBExecute ("Northwind.Shippers", "Filter", "")

Cancel an existing filter (by passing an empty string)

DBExecute Commands

Command Connection |Description
Level

Connection Connection Modify the connection string.

BeginTrans Connection Begins a new Transaction.

CommitTrans Connection Saves any pending changes and ends
the current transaction.

RollbackTrans Connection Cancels any changes made and ends
the transaction.

CommitTransAll Connection Saves all changes and ends all
transactions.

RollbackTransAll |Connection Cancels all changes and ends all

transactions.
TransCount Connection Returns the number of pending
transactions.
Requery Recordset Re-run the Recordset Query.
CancelUpdate Recordset Cancel a DBAddNew operation.

107

Database Commands

SECTION 6 Functions and Methods

Command Connection |Description
Level
Find Recordset Find the specified criteria in a Recordset.
FinNext Recordset Combined DBMove("Next"), DBFind()
operation.
Source Recordset Modify the Recordset source.
Filter Recordset Apply a filter to a Recordset.
Save Recordset Saves a Recordset in XML format.

6-17-5 DBGetLastError

Description

Returns the last error string generated by the Database provider, and displays

it in a message box.

Syntax
returnstate = DBGetLastError (level, display)

Remarks

Argument Type Description

returnstate text The error message from the provider

level text A text point or constant specifying the
connection level. This must be a Connection
level.

display bool Optional flag. By default DBGetLastError will
display the providers error message in a
message box. Setting this flag to FALSE
prevents this action.

Typical Examples

DBGetLastError ("Northwind")

or

DBGetLastError ("Northwind", TRUE)

Both the above lines will get and display the last error to occur for the
Northwind connection.

ErrMsg

DBGetLastError ("Northwind", FALSE)

The last error to occur for the Northwind connection is stored Text point
'ErrMsg', without displaying a message box.

6-17-6 DBMove

Description

The DBMove function enables you to navigate around a Recordset by moving
the position of the 'current record' in the Recordset. When a Recordset is first
opened the first record is the current record.

Syntax
returnstate = DBMove (level, direction, position)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0

108

Database Commands

SECTION 6 Functions and Methods

Note:

Note:

Note:

Argument Type Description

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

direction text A text string indicating where to move to. May
be one of:

"First"
"Last"
"Next"
"Previous"
"Position"
"FirstPage"
"LastPage"
"NextPage"
"PreviousPage"
"Page"
"Bookmark"

position int/real |This optional parameter is only required when
directions of "Position", "Page" and "Bookmark"
are used. When used with "Position" and
"Page" this parameter must be an integer, and
is the record or page number to move to.
When used with "Bookmark" this parameter
must be a real.

Typical Examples
DBMove ("Northwind.Order Details", "First")
Go to the first record in the Recordset.

pos = 3
DBMove ("Northwind.Order Details", "Position", pos)

Go to the third record in the Recordset.
DBMove ("Northwind.Order Details", "Page", 6)
Go to the sixth page in the Recordset.

Bookmarks are returned from the function 'DBProperty’, they enable you to
return to a 'marked’ record, even after records have been added or deleted

Some Providers do not support moving in the "Previous" direction i.e. cursors
are 'Forward-Only'. Some 'Forward-Only' providers do allow moving "First",
while some are strictly Forward-Only i.e. the Recordset has to be Re-queried
effectively a combined Close then Open operation to reset the cursor back to
the start of the Recordset. Some Providers that do support moving "Previous"
do not support moving to "Position". However, in order to be consistent, CX-
Supervisor ensures that that all operations (except "Bookmarks") will work for
any connection to any provider but you need to bear in mind when designing
applications that use 'Forward-Only' cursors, that there may be some 'long-
winded' acrobatics being performed behind the scenes. See DBSupports() for
details of how to check the type of cursor in force.

Bookmarks will only work if specifically supported by the Provider.

109

Database Commands SECTION 6 Functions and Methods

6-17-7 DBOpen
Description

Opens a Connection or Recordset. Opening a Connection will automatically
open all recordsets associated with it, that are marked as auto open.
Recordsets can be opened in isolation by selecting the appropriate level.

Syntax
returnstate = DBOpen (level)

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

Typical Examples
DBOpen ("Northwind")

Open the connection to the Northwind database, and automatically open any
Recordsets set to open on connection.

done = DBOpen ("Northwind.Order Details")
Just open a specific Recordset.

6-17-8 DBProperty
Description

Returns the requested property. This function operates on the Recordset and
Field levels. The type of the value returned depends on the property

requested.
Syntax
returnstate = DBProperty(level, property)

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

property text The name of the property to get. For details
see the Recordset Properties and Field
Properties tables.

Typical Examples
Page = DBProperty ("CSV.Result", "CurrentPage")
Get the current page for the CSV.Result Recordset.

FieldSize = DBProperty ("Northwind.Customers.Address",
"g l za")
Get the size for the 'Address' field.
Note: The Recordset will only return valid properties when it is Open.

Recordset Properties
The properties of a Recordset are:

110

Database Commands

SECTION 6 Functions and Methods

6-17-9 DBRead

Property Description Return
type
"CurrentRecord "Current cursor position Integer
"RecordCount "Number of records in the Recordset. Integer
"Bookmark "Record marker. Real
"PageCount "Number of pages in the Recordset. Integer
"PageSize "Number of records in a page. Integer
"CurrentPage "Page in which the cursor position resides. Integer
"Source "Command or SQL that created the Recordset. | Text
"Sort "Field name(s) the Recordset is sorted on. Text
"FieldCount "Number of fields(columns) in the Recordset. |Integer
"BOF "Current position is at the start of the Bool
Recordset.
"EOF "Current position is at the end of the Recordset.|Bool

Field Properties
The properties of a Field are

Property Description Return

type
"Value "Value of the field at the current position. As type

of field
"Name "Name of the Field. String
"Type "The fields data type. String
"Size "Maximum width of the field. Integer
Description

Reads a record from a Recordset to the associated point(s), or if associated
points are array points, reads a whole page of records. This function operates
on both Recordset and Field levels. At the Field level the associated column
values from the Recordsets current position will be copied into the Point
(number of elements copied = number of elements in the Point, no paging
applies at the Field level).

Syntax
returnstate = DBRead(level, reset)

Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0

level text A text point or constant specifying the
connection level. This must be a Recordset
level.

111

Database Commands

SECTION 6 Functions and Methods

Note:

Note:

6-17-10 DBSchema

112

Argument Type Description

reset bool This argument is optional and may be omitted.
If omitted or TRUE, when the read is complete
the record cursor is reset to the position prior to
reading.

Typical Examples
DBRead ("Northwind.Customers")

Read the next page of records from the 'Customers' Recordset.
DBRead ("Northwind.Customers", FALSE)

Read the next page of records from the 'Customers' Recordset, and leave the
cursor at the next record.

DBRead ("Northwind.Customers.Address")

The Address field is read. If it is an array point, the Address is read from
subsequent records until the array has been filled.

Use with reset = TRUE is useful if the read operation is being combined with a
subsequent Write operation i.e. you can read in a set of records - resetting the
cursor, make modifications to some of the fields and then Write the changes
back to the Recordset.

Use with reset = FALSE will leave the current position at the start of the next
set of records. This option can be of benefit if the Provider only supports
forward moving cursors, or you simply want to step through the records a page
at a time.

Description

Issues commands to read schema results or properties or set up new schema
criteria. This function operates only at a Schema level.

Syntax
return = DBSchema (level, command, parameters...)
Remarks

Argument Type Description

return Value returned by command. For some
commands e.g. "RecordCount" this is an
integer value, for other commands this is a text

value.

level text A text point or constant specifying the
connection level. This must be a Schema
level.

Database Commands

SECTION 6 Functions and Methods

6-17-11 DBState

Argument Type Description

command text The command must be one of the following:

* "Read"- Transfers a schema page into the
associated point

+ "Set" - Enables schema details to be
modified

+ "Type" - Returns the current Schema Type

» "Criteria"- Returns the current Schema
Criteria

» "Filter" - Returns the current Schema Filter

» "RecordCount" - Returns the number of
records in the current Schema

» "PageCount" - Returns the number of
pages in the current Schema

» "CurrentPage" - Returns the current
Schema page

parameters Some commands require 1 or more extra
parameters. "Read" takes an optional
parameter 'Page Number' of type integer. If no
'Page Number' is supplied, this function will
return page 1 when first called and
automatically return the next page of schemas
for each subsequent call, cycling back to the
beginning when all pages have been returned.

"Set" takes three text parameters for Schema
‘Name', 'Criteria’ and 'Filter".

Typical Examples

NumberOfRecords = DBSchema ("Invoice.Data Types",
"RecordCount")

Read the Number of records in the Schema.
DBSchema ("Invoice.Data types", "Read", 2)
Read Schema page 2 results into the associated point.

DBSchema ("Invoice.Data Types", "Set", "Columns",
" COLUMN NAME ",o"m

Set a new Schema to return column names.

Description

Reports if the specified level is in the requested state.

Syntax

return = DBState(level, state)

Remarks

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

113

Database Commands

SECTION 6 Functions and Methods

6-17-12 DBSupports

Note:

6-17-13 DBUpdate

114

Note:

Argument Type Description

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

state text The requested state must be either "Open" or

"Closed"

Typical Examples

State = DBState ("Invoice", "Closed")
Checks if the Connection "Invoice" is currently closed.

State = DBState ("Northwind.Customers", "Open")
Checks if the Recordset "Customers" is currently open.

Description
Returns TRUE if the specified Recordset supports the requested operation.
Syntax

return = DBSupports (level, operation)

Remarks

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

operation text The requested operation may be one of:
"AddNew"

"Bookmark"

"Delete"

"Find"

"MovePrevious"

"Update"

Typical Example
Result = DBSupports ("CSV.Recordsetl", "Delete")
Checks if records can be deleted in 'Recordset1’

If the "MovePrevious" operation is not supported then only 'Forward-Only'
cursor movements are supported.

Description

Update the record being added in a Recordset. Used in conjunction with
DBAddNew to commit a new record.

DBUpdate is ONLY required when DBAddNew has been used at the Field
level. When DBAddNew is used at the Recordset level an additional DBUpdate
is not required as this is performed automatically.

Syntax
returnstate = DBUpdate(level)

Database Commands

SECTION 6 Functions and Methods

6-17-14 DBWrite

Remarks

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

Typical Example

DBAddNew ("Northwind.Order Details.OrderID")
DBAddNew ("Northwind.Order Details.ProductID")
DBAddNew ("Northwind.Order Details.Quantity")
DBAddNew ("Northwind.Order Details.UnitPrice")

DBUpdate ("Northwind.Order Details")

Each required field is added to the new record using multiple calls to
DBAddNew(). When the record is complete, it is added to the Recordset by
calling the DBUpdate() function.

Description

Writes a set of records into a Recordset from the associated point(s). This
function operates on both Recordset and Field levels. At the Recordset level
all the associated points values from the Points will be written into the
Recordset starting at the current record (1 page of values will be written for
each Point). At the Field level the associated values from the point are written
into the Recordsets starting at the current position. The number of elements
written = number of elements in the Point. This function will fail, if the
Recordset is opened with a Lock of 'Read Only".

Syntax
return = DBWrite(level, reset)

Remarks

Argument Type Description

return bool 1 if the specified level is in the requested state,
otherwise 0

level text A text point or constant specifying the
connection level. This may be a Connection or
Recordset level.

reset bool This argument is optional and may be omitted.
If omitted or TRUE, when the write is complete
the record cursor is reset to the position prior to
writing.

Typical Examples
DBWrite ("Northwind.Customers")

Write all point values to the associated Customers fields.
DBWrite ("Northwind.Customers.Address", FALSE)

Write the point values to the Address column, and leave the cursor at the next
set of records.

115

Serial Port Functions SECTION 6 Functions and Methods

6-18 Serial Port Functions
6-18-1 InputCOMPort

Description

Sets the serial communications port for receiving ASCII text messages. Any
message received is placed in the text point. The boolean flag is set true to
indicate that a message has been received. It is up to the user to reset this
flag between receiving messages in order to indicate that a new message is
present. This function need only be called once to receive multiple messages
every time the termination character is recieved.

Syntax
ReturnState = InputCOMPort (PortNumber, Message,
MessagePresent, MaxLength)

Remarks

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer |The number of the port previously configured

using the function SetupCOMPort and opened
with OpenCOMPort.

message Text Text point to hold ASCII text message received
through the port.

MessagePresent |Bool Boolean point indicating that a message has
been received.

MaxLength Integer |Optional. Maximum length of transmission
before input is terminated. Used where fixed
length packets are received without termination
characters.

Typical Example:
bState = InputCOMPort(l, Msg, bTransmission)

6-18-2 OutputCOMPort
Description

Sends an ASCIl text message out through the designated serial
communications port.

Syntax
ReturnState = OutputCOMPort (PortNumber, Message)
Remarks
Argument Type Description
ReturnState bool True if successful else false.
PortNumber Integer |The number of the port previously configured

using the function SetupCOMPort and opened
with OpenCOMPort.

message Text Text point to hold ASCII text message to send
through the port.

Typical Example:
bState = OutputCOMPort (1, Msqg)

116

Serial Port Functions SECTION 6 Functions and Methods

6-18-3 CloseCOMPort
Description

Closes the designated serial communications port on the PC. The port must
have been configured and opened before it can be closed.

Syntax
ReturnState = CloseCOMPort (PortNumber)

Remarks

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer |The number of the port previously configured
using the function SetupCOMPort and opened
with OpenCOMPort.

Typical Example:
bState = CloseCOMPort (1)

6-18-4 OpenCOMPort
Description

Opens the designated serial communications port on the PC for transmitting or
receiving data. The port must have been configured before it can be opened.

Syntax
ReturnState = OpenCOMPort (PortNumber)
Remarks
Argument Type Description
ReturnState bool True if successful else false.
PortNumber Integer |The number of the port previously configured
using the function SetupCOMPort.

Typical Example:
bState = OpenCOMPort (1)

6-18-5 SetupCOMPort

Description

Configures the designated serial communications port on the PC for
transmitting or receiving data.

Syntax
ReturnState = SetupCOMPort (PortNumber,
ConfigurationString, HandShaking, TerminationChar,
ControlCharFlag, TermMode)

Remarks

Argument Type Description

ReturnState bool True if successful else false.

PortNumber Integer |A string indicating the desired Baud rate, Parity,

number of data bits and stop bits.

117

ActiveX Functions

SECTION 6 Functions and Methods

Argument Type Description

HandShaking Integer |The required handshaking protocol. Valid
values are

0 - None

1 - XonXoff
2-RTS

3 - RTS & XonXoff

TerminationChar |Integer |A character indicating the end of the message.

ControlCharFlag |Bool A flag indicating that control characters
contained in a received message should be
Ignored.

TermMode Integer |Optional. Flags to indicate how to use the

termination character

@ONINPUT (or value 1) - Function
InputComPort expects Termination Character.
This is the default value if omitted.
@ONOUTPUT (or value 2) -Function
OutputComPort appends Termination
Character.

@ONINPUT | @ONOUTPUT (or value 3) -
both of the above.

Typical Example:
bState = SetupCOMPort (2, "9600,N,8,1", 0, 0x0D, TRUE)

6-19 ActiveX Functions

6-19-1 GetProperty

118

Description
Gets the value of a property of an OLE object and stores it in a point.
Syntax

propertyvalue = GetProperty(object, property, ...)
Remarks

Argument Type Description

propertyvalue n/a The value of the property. Type is dependant
on the type of the property.

object Text The name of the OLE object to get the property
of.

property Text The name of the property to get.

--- n/a Any number of parameters for the property.

Typical Examples
OLElHeight = GetProperty ("OLE1l", "Height")

This will read the property 'Height' from the OLE object 'OLE1' and store it in
the point 'OLEHeight'.

DM100Value = GetProperty("CXCommsl", "DM", 100)

ActiveX Functions

SECTION 6 Functions and Methods

6-19-2 PutProperty

6-19-3 Execute

This will read the property 'DM' (with one parameter 100) from the OLE object
'CXComms1' and store it in the point 'DM100Value'.

Description
Puts a value stored in a point into the property of an OLE object.
Syntax

PutProperty (object, property, ..., value)

Remarks

Argument Type Description

object Text The name of the OLE object containing the
property to change.

property Text The name of the property to put.

--- n/a Any number of parameters for the property.

value n/a The value to write to the property. Type is
dependant on the type of property. Can also be
a number.

Typical Examples
PutProperty ("OLE1", "Left", NewLeftValue)

This will write the value stored in the point NewLeftValue to the property 'Left’
in the OLE object 'OLE1".

PutProperty ("CXCommsl1l", "DM" 10, NewValue)

This will write the value stored in the point NewValue to the property 'DM' (with
one parameter 10) in the OLE object 'CXComms1".

PutProperty ("Gaugel", "Value", 25.2)
This will write the value 25.2 to the object 'Gauge1'.

Description
Execute a method of an OLE object.
Syntax
Execute (object, method, ...)
Remarks
Argument Type Description
object Text The name of the OLE object.
method Text The name of the method to execute.
--- n/a Any number of parameters for the method.

Typical Examples
Execute ("OLE1", "Start")

This will call the method 'Start' on the object 'OLE1".
Execute ("CXCommsl", "OpenPLC", "MyPLC")

This will call the method 'OpenPLC' with one text parameter 'MyPLC' on the
OLE object 'CXComms1'

119

ActiveX Functions

SECTION 6 Functions and Methods

6-19-4 ExecuteVBScript

Description

Creates aliases allowing Visual Basic Script to be executed in line. This uses

the Windows Scripting Host. See chapter 5 for a list of supported functions
and details of the Windows Scripting Host.

Syntax

QVBSCRIPT
QENDSCRIPT
Typical Examples
QVBSCRIPT
OLE1.LEFT = Point ("PointName")
@QENDSCRIPT

This Visual Basic Script will write the value from the point 'PointName' into the
property 'Left' of the OLE object 'OLE1".

6-19-5 ExecuteJScript

Note:

Description

Creates aliases allowing Java Script to be executed in line. See Appendix C
for a list of supported functions and details of the Windows Scripting Host.
Syntax

@JSCRIPT

@ENDSCRIPT
Typical Examples

@JSCRIPT

Point ("PointName") = OLE 1.Height;
@ENDSCRIPT

This Java Script will write the value of the property 'Height' from the OLE
object 'OLE1" into the Point named 'PointName’'.

The Java Script can not include the { or } characters. To use these, put the
script in a text file and use the ExecutedScriptFile function.

6-19-6 ExecuteVBScriptFile

120

Description

Allows Visual Basic script stored in a text file to be executed. This uses the

windows scripting host which must be installed. See chapter 5 for a list of
supported functions.

Syntax

returnstate = ExecuteVBScriptFile (scriptfile)
Remarks

Argument Type Description

returnstate bool 1 if the function is successful otherwise 0.

scripffile Text The name of the file with the Visual Basic Script
to execute.

Typical Examples

returnstate = ExecuteVBScriptFile ("c:\vbscript.txt")
This will execute the Visual Basic Script stored in "c:\vbscript.txt".

ActiveX Functions SECTION 6 Functions and Methods

6-19-7 ExecuteJScriptFile

Description

Allows Java script stored in a text file to be executed. This uses the windows
scripting host which must be installed. See Appendix C for a list of supported

functions.
Syntax

returnstate = ExecuteJScriptFile(scriptfile)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise 0.
scripffile Text The name of the file with the Java Script to

execute.

Typical Examples

returnstate = ExecuteJScriptFile ("c:\jscript.txt")
This will execute the Java Script stored in "c:\jscript.txt".

6-19-8 GenerateEvent

Description

This command is only used in conjunction with a remote connection using a
CX-Supervisor Communications control (see User Manual Chapter 15,
Connecting to remote applications). This command allows the Server machine
to post unsolicited data back to the client machine. This data is captured in the
client's "OnEvent" handler.

The data for the parameters is entirely at the designer's discretion, depending
on what the client needs to be informed of.

Syntax

returnstate = GenerateEvent (paraml, param2, param3)
Remarks
Argument Type Description
returnstate bool 1 if the function is successful otherwise O.
param1 Text Optional. Parameter of data to send
param2 Text Optional. Parameter of data to send
param3 Text Optional. Parameter of data to send

Typical Examples
returnstate = GenerateEvent ("Archive", "", "")

An 'Archive'event is sent to the client application that may force the client to

perform some specified archive operation. The second and third parameters
are not used.

returnstate = GenerateEvent ("[Alarm Set]", "Boiler
alarm", "95.5")

An event is sent to the client application which can be interpreted as 'The
Boiler alarm has been set with a process value of 95.5'.

121

ActiveX Functions SECTION 6 Functions and Methods

122

Balloon Script SECTION 7 Script Example

SECTION 7
Script Example

This chapter provides an example application for a script. The script is a

typical script exercising the basic commands. It is described twice, once as a
whole, and once on a line by line basis.

71 Balloon Script

The following script applies to a simple game.

! iz i | Help... I ‘ Reset I
an
in

M. o
¢

The user must attempt to land the balloon on the plateau on the right, using
the Max/Min slider control throughout the flight. Clicking Reset clears the
current game and initialises a new game. Clicking the on/off pushbutton starts
the game.

When the balloon is airborne, clouds move slowly horizontally and change
colour slightly. Clicking Help at any time brings up a special help page;
clicking Close from this help page returns the user to the game. The blue
gauge shows the amount of fuel consumed and left.

The project consists of three page scripts and one object. The three page
scripts are initiated at varied intervals: 10 milliseconds, 100 milliseconds and
1000 milliseconds.

The page script initiated at intervals of 10 milliseconds determines the position
of each cloud, and the speed at which each cloud moves. The page script
initiated at intervals of 1000 milliseconds determines how the balloon reacts to
the conditions.

The page script initiated at intervals of 100 milliseconds provides the main
configuration of the game, reacting to user input and moving the balloon
accordingly. This page script is as follows:
IF burner AND alt > 400.0 THEN
burner = FALSE

ENDIF
IF burner THEN
fuel = fuel - rate
IF fuel < 0.0 THEN
fuel = 0.0
burner = FALSE

123

Balloon Script

SECTION 7 Script Example

124

ENDIF
ENDIF

IF burner AND fuel > 0.0 AND rate > 0.0 THEN
lift = 1lift + rate/5.0
ELSE
IF alt > 140.0 THEN
lift = 1lift - 0.2

ENDIF
ENDIF
IF 1ift < -10.0 THEN
lift = -10.0
ENDIF

alt = alt + 1lift
IF alt <= 140.0 THEN
IF distance>630.0 AND distance<660.0 AND 1lift>=-
3.0 THEN
winner = TRUE
burner = FALSE
ENDIF
IF 1ift < -3.0 then
crash = TRUE
burner = FALSE
ENDIF
1lift = 0.0
ENDIF

speed = (alt-140.0)/100.0
IF speed < 0.0 then

speed = 0.0
ENDIF

distance = distance + speed
The following paragraphs describe the above script on a line by line basis.

IF burner AND alt > 400.0 THEN
burner = FALSE
ENDIF

If the fuel burner is on, based on Boolean point 'burner’ set to 'TRUE', and the
altitude of the balloon, based on point 'alt', exceeds 400, then the fuel burner is
turned off. Point 'alt' is measured in pixels between 140 and 1000, so the
value of 400 is the height in pixels.

IF burner THEN

fuel = fuel - rate
IF fuel < 0.0 THEN
fuel = 0.0
burner = FALSE
ENDIF
ENDIF

If the fuel burner is on, the amount of fuel remaining decreases by the rate of
ascent. The rate of ascent, point 'rate’ can be modified by moving the slider. If
point 'fuel’ currently has a value of less than 0, then there is no fuel left and the
fuel burner is turned off.

IF burner AND fuel > 0.0 AND rate > 0.0 THEN

lift = 1lift + rate/5.0
ELSE

Balloon Script

SECTION 7 Script Example

IF alt > 140.0 THEN
lift = 1ift - 0.2
ENDIF
ENDIF

If the fuel burner is on, and there is still fuel left, and the rate of ascent exceeds
0 (the balloon has taken off) then point 'lift' is incremented by the rate of ascent
divided by 5 to allow the balloon to climb. Otherwise the balloon must be
descending and point 'lift' is decremented by 0.2.

IF 1ift < -10.0 THEN
lift = -10.0
ENDIF

Once point 'lift' reaches -10, it is not allowed to go lower.
alt = alt + 1lift
The altitude of the balloon is incremented by point 'lift".

IF alt <= 140.0 THEN
IF distance>630.0 AND distance<660.0 AND lift>=-

3.0 THEN
winner = TRUE
burner = FALSE
ENDIF

If the balloon has hit the ground (point 'alt' equals 140), then provided it is on
the plateaux (the position of the balloon in pixels defined by point 'distance’ is
between 630 and 660) and the rate of descent is not too fast (defined by point
'lift"), then the game is won.
IF 1lift < -3.0 then
crash = TRUE
burner = FALSE
ENDIF

If the balloon has hit the ground (point 'alt' equals 140), then if the rate of
descent is not too fast (defined by point 'lift'), then the game is lost.

1lift = 0.0
ENDIF

Point 'lift' is reset.
speed = (alt-140.0)/100.0
IF speed < 0.0 then
speed = 0.0
ENDIF

Point 'speed' is calculated based on the altitude.
distance = distance + speed
Point 'distance’ is calculated based on the speed.

125

Balloon Script SECTION 7 Script Example

126

SECTION 8 Colour Palette

SECTION 8
Colour Palette

This chapter describes the colour palette. A colour may be specified by its
name or number. The following table provides a cross-reference between
these. Some colour names made up of more than one word are separated by
an underscore or a hyphen. A specified colour can be changed in the CX-
Supervisor development environment for the current session; such changes
cannot be saved to a Page or Project, unless colours are changed from the
Colour Palette located under the General Settings submenu in the Project
menu.

Using a 16 colour-based screen resolution (consult the Microsoft Windows
documentation for further information) colours 16 to 65 are dithered from the
sixteen base colours. Higher colour-based resolutions are not dithered.

No. Colour No. Colour
0 black 12 purple
1 blue 13 olive
2 green 14 dark_grey
3 cyan 15 light-grey
4 red 16 pale-green
5 magenta 17 light-blue
6 yellow 18 off-white
7 white 19 grey
8 dark_blue 20 cherry
9 dark_green 21 silver
10 blue-green 22 apple
1" brown 23 orange
24-65 Not used

127

SECTION 8 Colour Palette

128

Component Properties

Appendix A OPC Communications Control

Appendix A
OPC Communications Control

This appendix contains a list of the available component properties and gives
details of the Visual Basic script interface. These properties can be set in run
time by using a Visual Basic script command - for example: -

OMRONCXOPCCommunicationsControl1.ServerNodeName = "\NAME"

The Script Interface defines the Visual Basic script interface for the OPC
communications control. See ExecuteVBScript script functions for more
information on running Visual Basic Script.

A.1 Component Properties

Property Title Example |Description
DisplayErrors True When set True, the object will display a
False message box for any errors. If set to

False, error messages are not displayed.

ProjectName Name of .OPC file containing the client
setup.

ServerComputerName |"MyPC "This is the name of the PC with the
OPC Server.

ServerName Name of the OPC Server to connect to.
e.g. OMRON.OpenDataServer.1

ServerProjectName Optional filename, which if specified

causes the OPC Server to use the
specified file, if supported by the server.

A.2 Script Interface

A.3 Functions

A.3.1 Value

The Script Interface defines the methods for the OPC communications control.

Value Function for getting and setting an OPC item value.
Read Function to read the value of an OPC item.
Write Function to write the value of an OPC item.

Reads or writes the value of an OPC item.
Example 1 - Reading a value:

intval =
OMRONCXOPCCommunicationsControll.Value
("MyGroup", "BoilerTemp")

In this example, the OPC item 'BoilerTemp' in the OPC group called
"MyGroup" will be read from the OPC Server and will be stored in 'intVal'.

Example 2 - Writing a value:

OMRONCXOPCCommunicationsControll.Value ("MyGroup",
"BoilerTemp") = 50

In this example, the value 50 will be written to the OPC item 'BoilerTemp'.

129

Functions

Appendix A OPC Communications Control

A.3.2 Read

A.3.3 Write

130

Note:

'Value' is the default property so is assumed if omitted. Therefore, the

following examples are the same:
intval =
OMRONCXOPCCommunicationsControll.Value ("MyGroup",
"BoilerTemp")

and

intVal = OMRONCXOPCCommunicationsControll ("MyGroup",
"BoilerTemp")

Reads the value of an OPC item.
Example of synchronous read:

intval =
OMRONCXOPCCommunicationsControll.Read
("MyGroup", "BoilerTemp")
In this example, the OPC item 'BoilerTemp' in the OPC group called
"MyGroup" will be read from the OPC Server and will be stored in 'intVal'. The
script will wait for the read operation to complete before continuing to execute
the next line. This is identical to the operation of the 'Value' method.

Writes the value of an OPC item.

Example of synchronous write:
OMRONCXOPCCommunicationsControll.Write
"MyGroup", "BoilerTemp", NewValue

In this example, 'NewValue' will be written to the OPC item 'BoilerTemp' in the
OPC group called "MyGroup". The script will wait for the write operation to
complete before continuing to execute the next line. This is identical to the
operation of the 'Value' method.

Functions

Appendix B CX-Server Communications Control

B.1 Functions

Appendix B
CX-Server Communications Control

When the Project Settings->Advanced settings option "Allow advanced script
access to PLC via 'CXServer' control" option is selected a CX-Server
Communications Control is automaticalled created to allow script access to
CX-Server functions. This ActiveX control is always named 'CXServer'
(without any hyphen) and can always be used from any script.

This appendix contains a list of the available component properties and
methods on the script interface.

Value Function for getting and setting an area of memory in a
PLC. This function allows logical names to be used. If
an array is used, the first element is returned.

Values Function for getting and setting an area of memory in a
PLC. This function allows logical names to be used. If
an array is used then a SAFEARRAY is returned with all
values.

SetDefaultPLC Function for setting the default PLC. This is primarily
used when a project contains multiple PLCs.

OpenPLC Opens the specific PLC for communications.

ClosePLC Closes the specific PLC.

Read Function to read the value of a PLC point

Write Function to write the value of a PLC point

ReadArea Function for reading a block of memory from the PLC.

WriteArea Function for writing a block of memory to the PLC.

RunMode Function for reading / writing the current mode of the
PLC.

TypeName Function for reading the PLC type (e.g. CQM1H).

IsPointValid Checks a point name is valid.

PLC Memory A, AR, C, CIO,D,DM, DR, E, EM, G, GR, H, IR, LR, SR,

Functions ST, T, TC, TK, W.
Functions for getting and setting the memory areas in the
PLC.

ListPLCs Property. Holds a list of all PLC names configured in the
project file. This property is read only

ListPoints Property. Holds a list of all point names configured in the
project file. This property is read only.

IsBadQuality Checks whether a point is currently indicating "bad
quality"”.

ClockRead Reads the PLC Clock

ClockWrite Sets the PLC Clock

RawFINS Function that enables raw FINS commands to be sent to

a specified PLC.

131

Value

Appendix B CX-Server Communications Control

B.2 Value

B.3 Values

132

Active Function for returning the connection status of a
specified PLC.

TCGetStatus Function for returning the device status of a specified
temperature controller

TCRemoteLocal Function for switching a specified temperature controller
into Remote or Local mode

SetDeviceAddress |Sets PLC Network, Node, and Unit number and IP
address

SetDeviceConfig |Sets any element of device configuration

GetDeviceConfig |Gets any element of device configuration

UploadProgram Uploads a program from a PLC

DownloadProgram |Downloads a program to a PLC

Protect Protects (or releases protection on) program memory

LastErrorString Description of last error that occurred

Reads the value of an address from a PLC, or writes a value to an address in
a PLC. This function allows logical names.

Example 1 - Reading a value from the PLC using a logical name.
intvVal = CXServer.Value ("BoilerTemp")

or
intvVal = CXServer ("BoilerTemp")

In these examples, the PLC address associated with 'BoilerTemp' will be read
from the PLC and stored in 'intVal'. "Value" is the default property and does
not have to be specified.

Example 2 - Writing a value to the PLC using a logical name.
CXServer.Value ("BoilerTemp") = 50

or
CXServer ("BoilerTemp") = 50

In these examples, the value 50 will be written to the PLC address associated
with 'BoilerTemp'. "Value" is the default property and does not have to be
specified.

Reads an array of values from a PLC, or writes an array of values to a PLC.
This function allows logical names. If an array is used then a SAFEARRAY is
returned with all values.

Example 1 - Reading an array of values from the PLC using a logical name.
SomeArray = CXServer.Values ("BoilerTemps")
Example 2 - Writing an array of values to the PLC using a logical name.

CXServer.Values ("BoilerTemps") = SomeArray

SetDefaultPLC Appendix B CX-Server Communications Control

B.4 SetDefaultPLC

The 'SetDefaultPLC' function can be used to inform the script parser that a
particular PLC is has been set as the default. Once a default PLC has been
set, then it is not necessary (with some functions) to specify a PLC name. For
example,

CXServer.SetDefaultPLC ("MyPLC™")

intVal = CXServer.Value ("BoilerTempl")

CXServer.Value ("BoilerTempl") = 75

intvVal = CXServer.Value ("DM50")
Each "Value' function above will access data in the PLC called 'MyPLC".

Note: If there is only 1 PLC in the project then it is not necessary to call the

'SetDefaultPLC' function. The first PLC in a project will automatically be set as
the default PLC.

B.5 OpenPLC

Opens a PLC for communications. If no PLC is specified then the default PLC
is opened.

Example 1:

CXServer.SetDefaultPLC ("MyPLC")
CXServer.OpenPLC ()

CXServer.DM(100) = 10

CXServer.DM(50) = 10
Example 2:

CXServer.OpenPLC ("MyPLC")

CXServer.DM(100) = 10

B.6 ClosePLC

Closes a previously opened PLC. If no PLC is specified then the default PLC
is closed.

Example:
CXServer.ClosePLC ("MyPLC")

B.7 Read

Function to read the value of a PLC point.
Example of synchronous Read
intVal = CXServer.Read ("MyPLC", "MyPoint", 0)

In this example, the Point 'MyPoint' will be read from the PLC 'MyPLC' and
stored in 'intVal'. The script will wait for the read operation to complete before
continuing to execute the next line due to the '0' parameter. This is identical to
the operation of the 'Value' method.

Note: If the PLC is not open, then this command will cause it to be opened, and then
closed after the read is complete. If more than one read or write operation is to
be performed, it is considerably faster and more efficient to use the OpenPLC
command first, do all the reading and writing, and then (if required) use the
ClosePLC command to close the PLC.

B.8 Write

Function to write the value of a PLC point.
Example of synchronous write:
CXServer.Write ("MyPLC", "MyPoint", NewValue, 0)

133

ReadArea

Appendix B CX-Server Communications Control

Note:

B.9 ReadArea

134

Note:

In this example, 'NewValue' will be written to the point 'MyPoint' in the PLC
called 'MyPLC'. The script will wait for the write operation to complete before
continuing to execute the next line due to the '0' parameter. This is identical to
the operation of the 'Value' method.

If the PLC is not open, then this command will cause it to be opened, and then
closed after the write is complete. If more than one read or write operation is
to be performed, it is considerably faster and more efficient to use the
OpenPLC command first, do all the reading and writing, and then (if required)
use the ClosePLC command to close the PLC.

Reads a specified block of memory from a PLC.
Examples of synchronous read:

MyVariant = CXServer.ReadArea ("MyPLC/DMO", 12, vbString)
MyVariant = CXServer.ReadArea ("BoilerTemp", 10, vbInteger)
MyVariant = CXServer.ReadArea ("BoilerTemp", 20)

In the first example, DMO to DM11 will be read as characters (part of a string)
from 'MyPLC' and will be stored in 'MyVariant. The second example
demonstrates that it is also possible to use a logical name for the start
address, and that any VB variant types (such as vbinteger) can be used. The
third example shows that the VB Variant type parameter is optional - if none is
specified then vbinteger is assumed. The script will wait for the read operation
to complete before continuing to execute the next line.

If accessing from a CX-Supervisor script, the following integral values should
be used for the return type:

Constant Value |Description

VbEmpty 0 Uninitialized (default)
vbNull 1 Contains no valid data
vbinteger 2 Integer subtype
vbLong 3 Long subtype
vbSingle 4 Single subtype
vbSingle 5 Double subtype
vbCurrency 6 Currency subtype
vbDate 7 Date subtype

vbString 8 String subtype
vbObject 9 Object

vbError 10 Error subtype
vbBoolean 11 Boolean subtype
vbVariant 12 Variant (used only for arrays of variants)
vbDataObject 13 Data access object
vbDecimal 14 Decimal subtype
vbByte 17 Byte subtype

WriteArea

Appendix B CX-Server Communications Control

B.10 WriteArea

B.11 RunMode

B.12 TypeName

B.13 IsPointValid

Constant Value |Description

vbArray 8192 Array

Writes a block of memory to a specified area in a PLC.
Examples of synchronous write:

MyString = "TestString"

CXServer.WriteArea "MyPLC/DM50", 10, MyString

Dim newValue (2)

newValue(l) = 0

newValue (2) =1

CXServer.WriteArea "BoilerTemp", 2, newValue
In the first example, the contents of 'MyString' will be written into DM50 to
DM54. Any additional data in 'MyString' will be ignored (i.e. if 'MyString' is 15
characters in length then the first 10 characters will be written to DM50 to
DM54 and the remaining 5 characters will be ignored - {Note: each PLC
address holds 2 characters}). The second example shows that a logical name
can be used. The script will wait for the write operation to complete before
continuing to execute the next line.

Reads the current operating mode of a PLC (Stop/Program, Debug, Monitor,
Run), where 0=Stop/Program mode, 1=Debug mode, 2=Monitor mode and
4=Run mode.

Example
intMode = CXServer.RunMode ("MyPLC")

In this example, the operating mode would be read from 'MyPLC' and stored in
'intMode’". If 'MyPLC' was in 'Monitor' mode then 'intMode' would be set to the
value 2.

Reads the PLC model name of a PLC (e.g. C200H, CQM1H, CVM1 etc).
Example
strPLCType = CXServer.TypeName ("MyPLC")

In this example, the PLC model type will be read from 'MyPLC' and will be
stored in 'strPLCType'.

Checks if a Point name has been defined in the CX-Server project file.
Examples

bvalid = CXServer.IsPointValid ("MyPoint")
bvalid = CXServer.IsPointValid ("MyPoint", "MyPLC")

In both examples, the boolean variable bValid is set True if the point "MyPoint"
has been defined.

B.14 PLC Memory Functions

(A, AR, C, CIO, D,DM, DR, E, EM, G, GR, H, IR, LR, SR, ST, T, TC, TK, W)

135

ListPLCs

Appendix B CX-Server Communications Control

Note:

B.15 ListPLCs

B.16 ListPoints

136

All PLC memory functions (e.g. A, AR, D, DM etc.) work in exactly the same
way. The following examples use the DM function to get and set the value of a
DM address in a PLC.

Example 1

intVal = CXServer.DM(100)
In this example, the contents of DM100 will be read from the PLC and stored
in 'intVal'.
These examples assume there is only 1 PLC in the CX-Server project file, or
that the 'SetDefaultPLC' function has been used to select the required PLC.
Refer to the 'SetDefaultPLC' function for details about using script with multiple
PLCs in the project.
Example 2

CXServer.DM(100) = 75
In this example, the value 75 will be written to DM100 in the PLC.
Bit addressing, that is accessing data from individual memory bits, is also
supported by these memory areas: IR, AR, HR and CIO.
Example 3

bval = CXServer.IR("100.2")
In this example, the status of bit IR100.2 (i.e. bit 2 of IR100) will be read from
the PLC and stored in 'bVal' (e.g. 'bVal' will be set to TRUE or FALSE).
Example 4

CXServer.IR("100.2") = True

In this example, bit IR100.2 (i.e. bit 2 of IR100) in the PLC will be set to True.
Note that use of the quotes is optional, but is required to differentiate between
100.1 and 100.10

Holds a list of all PLC names configured in the project file. This property is
read only.

Example

Dim arrayOfPLCs
Dim nUbound, nLbound
arrayOfPLCs = CXServer.ListPLCs
nLbound = LBound (arrayOfPLCs)
nUbound = UBound (arrayOfPLCs)
For Count = nLbound To nUbound
MsgBox arrayOfPLCs (Count)
Next

In this example, the list of PLC names in the project configured stored in
‘arrayOfPLCs' and then each is displayed in a message box.

Holds a list of all point names configured in the project file or PLC. This
property is read only.

Example

Dim arrayOfPoints

Dim nUbound, nLbound

arrayOfPoints = CXServer.ListPoints (sPLC)
nLbound = LBound (arrayOfPoints)

nUbound UBound (arrayOfPoints)

IsBadQuality

Appendix B CX-Server Communications Control

B.17 IsBadQuality

Note:

B.18 ClockRead

B.19 ClockWrite

B.20 RawFINS

For Count = 1 To UBound(arrayOfPoints)
MsgBox arrayOfPoints (Count)
Next

In this example, the list of Points configured for the PLC name specified in text
point sPLC is stored in 'arrayOfPoints' and each displayed in a message box.

Example 2
arrayOfPoints = CXServer.ListPoints

If ListPoints is used without a parameter then points from all PLCs are
returned.

Checks whether a point is currently indicating "Bad Quality".
Example

Dim bBad
bBad = CXServer.IsBadQuality ("MyPLC", "MyPoint")

IsBadQuality will return True in situations where the quality is unknown, e.g.
where no previous communications with a point has occurred.

Function that reads the PLC clock
Example
Dim NewDate
NewDate = CXServer.ClockRead ("PLC1")

' dates can Dbe manipulated via standard VBScript
methods (FormatDateTime, DatePart etc.)

TextBoxl = NewDate ' this uses a Microsoft Forms
Text Box to convert date to string
TextPointl = TextBoxl 'this writes the date string to

a CX-Supervisor text point

Function that sets the PLC clock. The expected format for the date is "dd/mm/
yyyy hh:mm:ss".

Example

Dim NewDate

'set time/date value here using standard VBScript
methods (Date, Time, Now, CDate etc.)

NewDate = Now ' This example sets the time to the
current PC time

CXServer.ClockWrite "PLCL1l", NewDate

This function enables raw FINS commands to be sent to a specified PLC. This
function is for advanced users familiar with the Omron FINS protocol only.

VBScript Example

Dim sFINS

Dim sResponse

sFINS = "0501"

sResponse = CXServer.RawFINS (sFins, sPLC)
txtFINSResponse = sResponse 'txtFINSResponse is a CX-
Supervisor point.

137

Active

Appendix B CX-Server Communications Control

B.21 Active

B.22 TCGetStatus

Returns the connection status of a specified PLC.
VBScript Example

bActive = CXServer.Active ("MyPLC") ' bActive is a CX-
Supervisor point

In this example, the connected status would be read from 'MyPLC' and stored
in CX-Supervisor point 'bActive'. If 'MyPLC' is connected 'bActive' would be set
to True.

Return status data for the specified temperature controller.
Example

Dim bTCStatusResponse

bTCStatusResponse = CXServer.TCGetStatus ("ESAK")
'Heating output is bTCStatusResponse (21
'Cooling output is bTCStatusResponse (22
'Alarm 1 output is bTCStatusResponse (
'Alarm 2 output is bTCStatusResponse (
'Alarm 3 output is bTCStatusResponse (
'Stopped status is bTCStatusResponse (
'Remote status is bTCStatusResponse (30)

In this example, the device status is being read from "E5AK" as an array of

bytes. The response from the temperature controller is stored as an array of
bytes in bTCStatusResponse.

2
2
2
2

B.23 TCRemotelLocal

The TCRemoteLocal command will execute the Remote/Local command for
the specified temperature controller:

Example - in this example, the "ESAK" device is being set to local mode:

'Set the device to local mode
CXServer.TCRemoteLocal "ESAK", 1

Example - in this example, the "ESAK" device is being set to remote mode:

'Set the device to remote mode
CXServer.TCRemoteLocal "ES5AK", O

B.24 SetDeviceAddress

138

This function can be used to set key elements of a device address (the
network number, node number, unit number and Ethernet IP address). The
numbers are in the range 0 to 255, with -1 being used to denote "ignore this
parameter". This function is for advanced users only.

Note: this method does not interpret or verify the data passed, and it is
possible to pass invalid data that will prevent a device communicating. Care
should be taken to ensure that all data passed is valid. This method should not
be used while a PLC is open and communicating.

Example:

NetworkNum = 1
NodeNum = 2

UnitNum = -1
iPAddress = "10.0.0.1"
bvalid = CXServer.SetDeviceAddress ("PLC1",

NetworkNum, NodeNum, UnitNum, IPAddress)

SetDeviceConfig Appendix B CX-Server Communications Control

Note: The return Boolean value, bValid, is set to True if no errors were detected.
However, this does not necessarily mean that all the parameters used were
valid or appropriate for the PLC being used.

B.25 SetDeviceConfig

This is a function that can be used to set any element of CX-Server device
configuration. All the data is passed in textual form. This function is for
advanced users only.

Note: This method does not interpret or verify the data passed, and it is possible to
pass invalid data that will prevent a device communicating. Care should be
taken to ensure that all data passed is valid. This method should not be used
while a PLC is open and communicating.

Example:
Device = "PLC1"
Section = "NET"
Entry = "IPADDR"
Setting = "10.0.0.1"
bvalid = CXServer.SetDeviceConfig Device, Section,
Entry, Setting
Note: The return Boolean value, bValid, is set to True if no errors were detected.

However, this does not necessarily mean that all the parameters used were
valid or appropriate for the device being used.

Only the following Section, Entry and Setting parameter value combinations
are currently supported:

» Section = "ADDRESS", Entry = "DNA", Setting = "0"..Setting = "255" -
this can be used to set the network number

+ Section ="ADDRESS", Entry = "DA1", Setting ="0"..Setting = "255" - this
can be used to set the node number

+ Section = "ADDRESS", Entry = "UNIT", Setting = "0"..Setting = "255" -
this can be used to set the unit number

+ Section = "ADDRESS", Entry = "IPADDR", Setting = "0.0.0.0"..Setting =
"255.255.255.255" - this can be used to set the Ethernet IP address

Other parameter values may work, but should only be used on Omron advice.

B.26 GetDeviceConfig

This is a function that can be used to read any element of the CX-Server
device configuration. All the data is passed (and received) in textual form. This
function is for advanced users only.

Example:
Dim Setting
Device = "PLCL"
Section = "NET"
Entry = "IPADDR"
Setting = CXServer.GetDeviceConfig Device, Section,
Entry

Currently supported parameter values are as described for the
SetDeviceConfig method.

139

UploadProgram

Appendix B CX-Server Communications Control

B.27 UploadProgram

The UploadProgram function can be used to read a program from a PLC. The
program is read in binary form, and stored in a user-specified file. This function
should not be used at the same time as any other PLC communications. The
project and PLC will automatically be opened if required. This function is for
advanced users only.

Example:

Dim SourceFile
Dim DestinationFile

Sourcefile = ""
DestinationFile = "c:\testl.bin"
CXServer.UploadProgram "pPLC1", SourceFile,

DestinationFile, 1, O
The first parameter is the PLC name.

The second parameter is the source file name. To upload the current program
this should be an empty string, but may also be set to the name of a file in the
root directory of a memory card, e.g. "Example.obj".

The third parameter is the name of the local file to store the program. A '.bin’
file extention is typical for a binary file.

Note: The 4th and 5th parameters are reserved, and should always be 1 and 0
respectively

B.28 DownloadProgram

B.29 Protect

140

Note:

Note:

The DownloadProgram function can be used to write a program to a PLC. This
function should not be used at the same time as any other PLC
communications. The project and PLC will automatically be opened if required.
This function is for advanced users only.

Care should be taken with this function to ensure that the program written is
valid for the PLC to which it is downloaded.

Example:

bvalid =CXServer.DownloadProgram "PLC1",
"c:\test2.bin", "", 1, O

The first parameter is the PLC name.

The second parameter is the local source file name. A ".bin' file extention is
typical for a binary file.

To download the current program the third parameter should be an empty
string, but may also be set to the name of a file to download to the root
directory of a memory card, e.g. "Example.obj".

The 4th and 5th parameters are reserved, and should always be 1 and 0
respectively

The Protect function can be used to protect (or remove protection from) PLC
program memory. This function should not be used at the same time as any
other PLC communications. The project and PLC will automatically be opened
if required. This function is for advanced users only.

Example 1 (sets protection for CS series PLC)

Dim SetProtection
Dim PasswordString
Dim PasswordNumber
EnableProtection = true

LastErrorString

Appendix B CX-Server Communications Control

B.30 LastErrorString

This property, which can be set as well as read, is a textual description of the

PasswordString = "Password"
PasswordNumber = 0
CXServer.Protect "pPLC1", EnableProtection,

PasswordString, PasswordNumber

Example 2 (unsets protection for C series PLC)

Dim SetProtection
Dim PasswordString
Dim PasswordNumber

EnableProtection = false

PasswordString = ""

PasswordNumber = 12345678

CXServer.Protect "PLC1", EnableProtection,

PasswordString, PasswordNumber

The parameters of this command are, in order:

PLC - Name of PLC.
EnableProtection - true to set password protection, false to unset it

PasswordString - Password as a string. For CS series PLCs this should
be a string of up to 8 characters. For CV PLCs this should be a string of
up to 8 characters containing a hexadecimal number, e.g. "12345678". For
C series PLCs this should be a string of up to 4 characters containing a
hexadecimal number, e.g. "1234".

PasswordNumber - currently this is only used for C and CV series PLCs,
and only when the password string is empty. In those circumstances it is
simply a number representing the value of the 4 or 8 digit password.
Please note that the password is entered in CX-Programmer as a
hexadecimal string (as with the PasswordString parameter above), and
that, for example, the value 1234 in decimal is the equivalent to "04d2" as
a hexadecimal password string.

Additional C Series PLC notes: For C series the PLC program needs code (the
first line of the application) in the PLC to enable password setting/release, and
this fixes the password value.

e.g. LD AR10.01
FUN49 0 0 #1234 (#1234 - password value in Hex)

When setting the password this value is used rather than the value passed -
i.e. the password string or number is ignored. The correct password must be
provided, however, when disabling the password protection.

last error that occurred. If none have occurred, it is blank.
Example:

txtError = CXServer.LastErrorString
CXServer.LastErrorString = ""

141

LastErrorString Appendix B CX-Server Communications Control

142

Appendix C JScript Features

Appendix C
JScript Features

This appendix provides a summary of JScript features available for use with
the ExecuteJScript and ExecuteJScriptFile script functions. These features
are provided by the Windows Scripting Host, included by default with Windows
and installed by Internet Explorer.

For details of the latest versions and support contact Microsoft at http://
msdn.microsoft.com/scripting

Category

Keyword / Feature

Array Handing

Array
join, length, reverse, sort

Assignments

Assign (=)
Compound Assign (OP=)

Booleans

Boolean

Comments

[*...*or/l

Constants / Literals

NaN

null

true, false
Infinity
undefined

Control flow

break
continue
for
for..in
if...else
return
while

Dates and Time

Date

getDate, getDay, getFullYear, getHours,
getMilliseconds, getMinutes, getMonth, getSeconds,
getTime, getTimezoneOffset, getYear,

getUTCDate, getUTCDay, getUTCFullYear,
getUTCHours, getUTCMilliseconds, getUTCMinutes,
getUTCMonth, getUTCSeconds,

setDate, setFullYear, setHours, setMilliseconds,
setMinutes, setMonth, setSeconds, setTime, setYear,
setUTCDate, setUTCFullYear, setUTCHours,
setUTCmillisecinds, setUTCMinutes, setUTCMonth,
setUTCSeconds,

toGMTString, toLocaleString, toUTCString, parse, UTC

Declarations

function
new
this

var

with

Function Creation

Function
arguments, length

143

Appendix C JScript Features

144

Category

Keyword / Feature

Global Methods

Global

escape, unescape
eval

isFinite, isNaN
parselnt, parseFloat

Maths

Math

abs, acos, asin, atan, atan2, ceil, cos, exp, floor, log,
max, min, pow, random, round, sin, sqrt, tan,

E, LN2, LN10, LOG2E, LOG10E, PI, SQRT1_2, SQRT2

Numbers

Number

MAX_VALUE, MIN_VALUE

NaN

NEGATIVE_INFINITY, POSITIVE_INFINITY

Object Creation

Object
new
constructor, prototype, toString, valueOf

Operators

Addition(+), Subtraction (-)

Modulus arithmetic (%)

Multiplication (*), Division (/)

Negation (-)

Equality (==), Inequality (!=)

Less Than (<), Less Than or Equal To (<=)
Greater Than (>)

Greater Than or Equal To (>=)

Logical And (&&), Or (]|), Not (!)
Bitwise And (&), Or (]), Not (~), Xor (*)
Bitwise Left Shift (<<), Shift Right (>>)
Unsigned Shift Right (>>>)
Conditional (?:)

Comma (,)

delete, typeof, void

Decrement (--), Increment (++)

Objects

Array
Boolean
Date
Function
Global
Math
Number
Object
String

Strings

String

charAt, charCodeAt, fromCharCode
indexOf, lastindexOf

split

toLowerCase, toUpperCase

length

Windows 2000, NT, Windows ME, Windows 98 and Windows 95 Appendix D Obsolete

Appendix D
Obsolete Features

This appendix provides a summary of features that are obsolete and have
been removed from the standard documentation. Details are included here to
assist maintaining old projects still using these features. These features
should not be used in development of new solutions as it is likely support for
the following features may and will be removed from the next or future
releases.

D.1 Windows 2000, NT, Windows ME, Windows 98 and Windows

95

This product will no longer install on these operating systems. It is
recommended to upgrade to a later Windows version.

D.2 Old project file formats

D.3 Sleep

Note:

Note:

Note:

This product no longer supports loading of project files (.SCS and . PAG) from
old formats saved by SYSMAC-SCS.

Description
Pause execution of a script for specified duration.
Syntax
Sleep (duration)
Remarks
Argument Type Description
Duration --- Number of milliseconds to wait before
continuing.

Typical Example
Sleep (1000)
CX-Supervisor waits 1 second.

The sleep statement should be used with caution, as some other parts of the
system may not be updated while a script is sleeping. It also uses
multithreading which means some tasks like PLC communication may occur in
parallel and behave unpredictably.

In a well designed, truly event driven system use of the Sleep() statement
should never be required. Always consider if the statements after the Sleep
should be in their own script, executed when a Condition occurs.

The Granularity (or intervals) differs between Operating Systems. In Windows
NT (and 2000) expiration is checked every 10ms, so 'Sleep(100)' actually
pauses for any time between 100.00 to 109.99 milliseconds depending on
when it was started. For Windows 98 (and ME) the granularity is 55ms so
'Sleep(100)' actually pauses for 110 (2 times 55) to 164.99 milliseconds (nearly
3 times 55). For this reason, Sleep statements can act differently on different
Operating Systems making the application OS dependant.

145

DDE Commands

Appendix D Obsolete Features

Note:

Sleep should never be used as a delay for timing processes, for the following
reasons:

* The actual time delay depends on the OS as described above

» There is always an error of 0 to 1 granularity, depending on when the
action is started.

» The frequency can not be guaranteed as the OS may be busy, or handling
other processes.

D.4 DDE Commands

D.4.1 DDEExecute

D.4.2 DDElnitiate

146

DDE as a means for exchanging data has now been obsolete for some years.
In fact for so long even its successor, OLE Automation is obsolete. DDE has
also proved to be a poor technology, suffering from unfixed memory leaks both
in the native Operating Systems, and tools like Microsoft Excel. This
technology has now been replaced and the CX-Supervisor Communications
Control should be used instead.

The following DDE script commands are obsolete.

Syntax
returnstate = DDEExecute (channel, {command})

Remarks

Argument Type Description

returnstate Bool Returnstate is '1' if the function is successful, or
'0' otherwise.

channel Integer |This is an integer point which contains the

point return value of the DDEInitiate() command.

Both server and topic parameters applied to the
channel based on the DDElInitiate() command
must be open or an error is reported.

command String | This is a command as recognised by the server
application specified within the channel.

Typical Example

channelname = DDEInitiate ("Excel", "Sheetl.xls")
DDEExecute (channelname,
{ [OPEN ("C:\EXCEL\WORK\SHEET2.XLS")1})

The file 'SHEET2.XLS' within path 'C:\EXCEL\WORK'" is opened in Microsoft
Excel, as specified by the Integer point 'channelname'. The file 'SHEET1.XLS'
is already open in Microsoft Excel

Syntax
channel = DDEInitiate("server", topic")
Remarks
Argument Type Description
channel Integer |This is an integer point which contains the
point return value of the DDElInitiate() command.

DDE Commands

Appendix D Obsolete Features

D.4.3 DDEOpenLinks

D.4.4 DDEPoke

Argument Type Description

server String | This contains the application that supports DDE
as a DDE server. Typically, this is the name of
the applications' *.EXE executable file without

the filename extension. At runtime, the server
application must be open or a value cannot be
returned and an error is reported.

topic String | This contains the name of the topic recognised
by the server application. Typically, a topicis a
document within an application. At runtime, the
topic must be open or a value cannot be
returned and an error is reported.

The topic may be left empty, which enables
documents to open remotely prior to making a
specified connection. The topic name 'System'
may be used to find out which other topics
within the server application are available.
However, this is dependant on the server

application supporting this topic.

Typical Example
channelname = DDEInitiate ("Excel", "Sheetl.xls")

The Integer point 'channelname' is provided with a DDE link to the application
Microsoft Excel which is run by the executable filename 'EXCEL.EXE', and to
the file 'SHEET1.XLS' within that application.

Syntax
returnstate = DDEOpenLinks (channel)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
channel Integer |This is an integer point which contains the

point return value of the DDElInitiate() command.
Both server and topic parameters applied to the
channel in the DDElInitiate() command must be
open or an error is reported.

Typical Example

channelname = DDEInitiate ("Excel", "Sheetl.xls")
DDEOpenLinks (channelname)

The DDEOpenLinks command enables points which have been configured to
communicate via DDE to begin data transfer. Data transfer between CX-
Supervisor and the application Microsoft Excel is automatically maintained
until the channel is closed either by Microsoft Excel or by the command
DDETerminate() using the Integer point 'channelname', or the command
DDETerminateAll().

Syntax

147

DDE Commands Appendix D Obsolete Features

returnstate = DDEPoke (channel, "item", pointname)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
channel Integer |This is an integer point which contains the

point return value of the DDElInitiate() command.
Both server and topic parameters applied to the
in the DDElInitiate() command must be open or
an error is reported.

item string This is an item as recognised by the server
application. For instance, a cell is an item
within a spreadsheet application. Likewise, a
page is an item for a word processing
application. It is wholly dependant on the
server application.

pointname point This is a point whose attributes must include a
DDE Access of 'Read/Only' or 'Read/Write'.
The contents of this point are assigned to the
server application.

Typical Example

channelname = DDEInitiate ("Excel", "Sheetl.xls")
DDEPoke (channelname, "R2C5", data)

The content of point 'data’ is sent to row 2, column 5 of 'SHEET1.XLS' in the
Microsoft application. The Microsoft Excel application, and 'SHEET1.XLS' are
specified by Integer point 'channelname’.

D.4.5 DDERequest
Syntax

pointname = DDERequest (channel, "item")

Remarks

Argument Type Description

channel Integer |This is an integer point which contains the
point return value of the DDEInitiate() command.
Both server and topic parameters applied to the
channel in the DDElInitiate() command must be
open or an error is reported.

item string This is an item as recognised by the server
application. For instance, a cell is an item
within a spreadsheet application. Likewise, a
page is an item for a word processing
application. It is wholly dependent on the
server application.

pointname point This is a point whose attributes must include a
DDE Access of 'Read/Write'.

Typical Example

channelname = DDEInitiate ("Excel", "Sheetl.xls")
cellref = DDERequest ("channelname", "R2C5")

148

DDE Commands

Appendix D Obsolete Features

D.4.6 DDETerminate

The point 'cellref' is filled from a specific item, row 2, column 5 from
'SHEET1.XLS' from the Microsoft Excel application, specified by the Integer
point ‘channelname’.

Syntax
returnstate = DDETerminate (channel)
Remarks
Argument Type Description
returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.
channel Integer |This is an integer point which contains the

point return value of the DDElInitiate() command.
Both server and topic parameters applied to the
channel in the DDElInitiate() command must be
open or an error is reported.

Typical Example
DDETerminate (channelname)

The server and topic specified by Integer point 'channelname' is closed.

D.4.7 DDETerminateAll

D.4.8 EnableDDE

Syntax
returnstate = DDETerminateAll ()
Remarks
Argument Type Description
returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Typical Example
DDETerminateAll ()
All previously initiated DDE links are closed.

Syntax
returnstate = EnableDDE (pointname)

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or

'0' otherwise.

Pointname bool A Boolean point that holds the required enable/

point disable state

Typical Examples
EnableDDE (result)

DDE functions are enabled based on the value of point 'result'. If 'point' is
'TRUE', then DDE is enabled, if 'point' is 'FALSE', then DDE is disabled.

EnableDDE (TRUE)

149

Graph Commands Appendix D Obsolete Features

DDE functions can also be enabled directly without using a point to hold the
desired status.

D.5 Graph Commands
D.5.1 ClearGraph

Syntax
returnstate = ClearGraph ("graphid", "pagename")

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
cleared.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Typical Examples
ClearGraph ("Graph 1", "TestPagel")

The trend or scatter graph on 'TestPage1' with the identifier 'Graph_1' has its
data cleared.

ClearGraph ("Graph 2")

The trend or scatter graph on the current page, with the identifier 'Graph_2',
has its data cleared.

D.5.2 StartGraph

Syntax

returnstate = StartGraph("graphid”, "pagename")

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
started.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Typical Examples
StartGraph ("Graph 1", "TestPagel")

The trend or scatter graph on 'TestPage1' with the identifier 'Graph_1' has its
data logging started.

StartGraph ("Graph 2")

The trend or scatter graph on the current page with the identifier 'Graph_2' has
its data logging started.

Note: This command is provided for compatibility with SCS v2.0 applications. For
newer applications the data logging facilities should be used in preference.

150

Graph Commands

Appendix D Obsolete Features

D.5.3 StopGraph

D.5.4 EditGraph

Syntax
returnstate = StopGraph ("graphid", "pagename")
Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
stopped.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Typical Examples

StopGraph ("Graph 1", "TestPagel")
The trend or scatter graph on 'TestPage1' with the identifier 'Graph_1' has its
data logging stopped.

StopGraph ("Graph 2")
The trend or scatter graph on the current page with the identifier 'Graph_2' has
its data logging stopped.

Syntax
returnstate = EditGraph ("graphid")

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

graphid string The identifier of the trend or scatter graph to be
edited.

Typical Example
EditGraph ("Graph 1")

The Edit Graph dialog is displayed offering options to view historical data for
the chosen trend graph.

* Display Data loads the currently selected data sample i.e. either the
current screen data or a snapshot of the data, into the trend graph.

« Snapshot stores the current data buffer associated with the trend graph.
The snapshot is given a time stamped default description.

» Description provides the ability to change the description associated with
the snapshot.

» Import Data provides the ability to load in a previously saved trend graph
file.

» Export Data provides the ability to store a snapshot to a file, either in
internal CX-Supervisor format, or as a text file that can be imported into
other applications.

* Delete removes the currently selected snapshot.

151

Graph Commands

Appendix D Obsolete Features

Note:

Note:

D.5.5 SaveGraph

D.5.6 Snapshot

152

Note:

This command is provided for compatibility with SCS v2.0 applications.
For newer applications the data logging facilities should be used in
preference.

This command can only be used if the trend is set to log to a file.

Syntax
returnstate = SaveGraph ("graphid")

Remarks

Argument Type Description

returnstate bool Returnstate is '1" if the function is successful, or
'0' otherwise.

graphid string | The identifier of the trend or scatter graph to be
saved.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Typical Examples
SaveGraph ("Graph 1", "TestPagel")

The trend graph on the page 'TestPage' with the identifier 'Graph_1' has its
data saved to disc.

SaveGraph ("Graph 2")

The trend graph on the current page with the identifier 'Graph_2' has its data
saved to disc.

Syntax
returnstate = Snapshot ("graphid", "pagename")

Remarks

Argument Type Description

returnstate bool Returnstate is '1' if the function is successful, or
'0' otherwise.

graphid string | The identifier of the trend or scatter graph to
have the snapshot.

pagename string Optional parameter indicating the name of the
page that the graph is on.

Typical Examples
Snapshot ("Graph 1", "TestPagel")

The current data in trend graph 'Graph1' on 'TestPage1’, is stored and is able
to be viewed via the EditGraph command.

Snapshot ("Graph 2")
The current data in trend graph 'Graph1' on the current page, is stored and is
able to be viewed via the EditGraph command.
This command is provided for compatibility with SCS v2.0 applications. For
newer applications the data logging facilities should be used in preference.

Graph Commands Appendix D Obsolete Features

D.5.7 GetPointValue

Syntax
returnpoint = GetPointValue (pointname,offset)

Remarks

Argument Type Description

pointname point This is the name of the point whose contents
are to be returned.

offset integer |This specifies the offset into an array point. 0 if
the point is not an array point.

returnpoint point Point that contains the return value. The type
of data returned is dependant on the pointname
specified.

Typical Example

pointname = 10;
returnpoint = GetPointValue (pointname, 0)

The point 'returnpoint’ contains the value 10. The offset is added to any offset
specified for pointname. For example:

returnpoint = GetPointValue(a[10],10)
Causes the 21st element (offsets begin at zero) of array 'a’ to be retrieved.

Note: It is often simpler to access an array element directly, e.g. returnpoint = a[20].
D.5.8 GetSpoolCount
Syntax
returnstate = GetSpoolCount ()
Remarks
Argument Type Description
returnstate int Number of messages queued up waiting to be
printed on Alarm/Message printer.

Typical Example
NumberMessages = GetSpoolCount ()

The count of the number of messages (typically printed alarms) that are
queued up waiting to be sent to the CX-Supervisor Alarm/Message printer is

returned.
D.5.9 SetPrinterConfig
Syntax
returnstate StePrintConfig(Driver, Device, Port)

Remarks

Argument Type Description

returnstate Bool Returnstate is '1' if the function is successful, or
'0' otherwise.

Driver String |Name of printer device (e.g. "Epson9" for 9 pin
Epson printers.

Device String |Name of specific device (e.g. "Epson FX-870").
This is optional.

153

Graph Commands

Appendix D Obsolete Features

154

Argument Type Description

Port String |Name of port or file(e.g. "LPT1.").

Line Terminator String | Optional. Sets terminator (e.g. cr) to be added

to end of each printed line.

Typical Examples
SetPrinterConfig ("SCSPRN", "', "LPT1:")
This uses standard CX-Supervisor line print driver.
SetPrinterConfig(""™, "", "")
This uses default Windows printer driver.
SetPrinterConfig ("Epson9", "", "LPT2:")
This uses Epson printer driver, attached to LPT2.

SetPrinterConfig (DriverNamePoint, DeviceNamePoint,
PrintNamePoint)

This uses text points.
Terminator = FormatText ("%$c%c",13,10)
Character 10 is 'If' (newline), character 13 is cr (carriage return).

SetPrinterConfig ("Epson9","","LPT1:", Terminator)

Appendix E Glossary of Terms

ADO

AND

Application

Arguments

ASCII

Bitmap

Boolean type

COM

Appendix E
Glossary of Terms

ADO stands for Active Data Objects and is data access
technology which uses OLE-DB to access data sources
in a uniform way e.g. MS-Access databases, MS-Excel
spreadsheets and Comma Separated Variable files.

A logic operator used to interrogate Boolean type points.
AND returns 'TRUE' if all arguments are "'TRUE'. An
example of AND is that if a is a statementand b is a
statement, AND returns "'TRUE' if both a and b are
"TRUE'. If one or both statements return 'FALSE' then
AND returns 'FALSE'.

A software program that accomplishes a specific task.
Examples of applications are CX-Supervisor, CX-Server
and Microsoft Excel. CX-Supervisor and its development
environment allows the creation and testing of new
applications through a Graphical User Interface (GUI).

Words, phrases, or numbers that can be entered on the
same line as a command or statement to expand or
modify the command or statement within the CX-
Supervisor script language. The command acts on the
argument. In essence the command is a verb, and the
argument is the object of the verb. An example of an
argument in CX-Supervisor is

"DDETerminate (channel)" where DDETerminate is
a command within the script language, and channel is
the argument upon which the command will act.

An old standard, defining a set of characters. Officially
using only 7 bits allows definitions for only 127
characters, and does not include any accented
characters.

The representation of an image stored in a computer's
memory. Each picture element (pixel) is represented by
bits stored in the memory. In CX-Supervisor a bitmap
image can be installed as a single object.

A type of point where the value of the point can be one of
two states. Essentially the two states are '0' and '1", but

these states can be assigned a meaningful designation.

Examples are:

State = Example Example Example Example
0 OFF FALSE OUT CLOSED
1 ON TRUE IN OPEN

COM is a Microsoft technology that allows components
used to interact.

155

Appendix E Glossary of Terms

156

Communications
Driver

Constant

Control Object

CX-Server

Database
connection

Database
Connection Level

Database
Recordset

Database Schema

Database Server
Query

The relevant communications management system for
OMRON PLCs in conjunction with Microsoft Windows,
providing facilities for other SYSMAC software to
maintain PLC device and address information and to
communicate with OMRON PLCs and their supported
network types.

Within CX-Supervisor, a constant is a point within the
script language that takes only one specific value.

In CX-Supervisor, a control object is applied in the
development environment and can be a pushbutton, a
toggle button, a slider, a trend graph, a rotational gauge
or a linear gauge. Essentially a control object can be a
complex graphic object consisting of a number of
primitive graphic objects, which provides user interaction.

An advanced communications management system for
OMRON PLCs providing facilities for software to
maintain PLC device and address information and to
communicate with OMRON PLCs and their supported
network types. CX-Server supports CS-Series PLCs.

A Database connection (or Connection for short)
contains the details used to access a data source. This
can either be via Data Source Name (DSN), filename or
directory.

A Database Connection Level is a string which
determines what level in the database tree hierarchy is to
be operated on. Some examples are listed below:

"Northwind" Connectionlevel
"CSV.Result" Recordset level
"Northwind.Order Details.OrderID" Field level
"Invoice.Data Types" Schema level

A Database recordset (or Recordset for short) is a set of
records. This could either be an actual Table in the
database, or a table that has been generated as a
consequence of running a Query.

A Database Schema (or Schema for short) obtains
database schema information from a Provider.

A Database Server Query (or Server Query for short) is a
query that is stored in the actual Database. They are
pre-defined and added by the database designer which
means they are 'fixed' for the duration of a project.
Server Queries may have pre-defined 'Parameters’,
which allow criteria to be passed to the query at runtime
e.g. values to filter, allowing one query to be used to
produce different results. Each pre-defined parameter
must have a Parameter Association defined. Because
these queries are stored in a compiled and tested form
they are more efficient and therefore preferential to
running a SQL Query.

Appendix E Glossary of Terms

Database SQL
Query

DBCS

DCOM

DDE

Development
Environment

DLL

Download

Executable

Expressions

A Database SQL Query (or SQL Query for short) is
interpreted dynamically at runtime. The SQL Text can be
modified at runtime, enabling different Queries to be run
for varying situations however, the SQL Text has to be
compiled on the fly every time it is executed and
consequently is less efficient than a Server Query.

DBCS stands for Double Byte Character Set and is a
Microsoft extension of ASCII which uses 2 bytes (16 bits)
to define character codes. With this larger range it can
include accented characters, extended ASCII characters,
Nordic characters and symbols.

DCOM is a distributed version of COM that allows
components on different PCs to interact over a network.

Dynamic Data Exchange. A channel through which
correctly prepared programs can actively exchange data
and controls other applications within Microsoft
Windows. DDE technology was notoriously unstable and
was replaced with OLE technology.

See also ltem, Server, server application and Topic.

SCADA applications are created and tested using the
development environment within CX-Supervisor. On
completion, the finished application can be delivered as a
final customer application to be run by the run-time
environment.

Dynamic Link Library. A program file that although
cannot be run stand-alone as an executable, can be
utilised by one or more applications or programs as a
common service. DLL files have a *.DLL extension.
DLL's comprise a number of stand-alone functions. In
CX-Supervisor, a DLL containing icons can be accessed
to represent the display part of an OLE object. One such
DLL, 'MORICONS.DLL', is provided in the standard
Microsoft Windows installation.

A recipe is downloaded during runtime. This process
involves identifying the appropriate recipe and executing
the validation code, if any exists. The download is
complete when each ingredient has set its point to the
target value.

A file that contains programs or commands of an
application that can be executed by a user or another
application. Executable files have a *.EXE file extension.
CX-Supervisor provides two executable files, one for the
development environment (CXSUPERVISORDEV.EXE),
and one for the run-time environment (SCS.EXE).

In the CX-Supervisor script language, expressions are a
construct for computing a value from one or more
operands. Forinstance, in the example "1ift =
height + rate", the expressionis "height + rate"
where the result yielded from the expression is used for
the value of "11 ft".

157

Appendix E Glossary of Terms

158

Field association

Graphic Object

GUI

I/O type

Icon

Ingredient

Integer type

Item

JScript

JVM
Microsoft Excel

Microsoft Windows

Microsoft Word for
Windows

Outside of the script language, expressions consisting of
operators and operands can be used to control objects,
through actions.

A field association enables a link to be made between a
CX-Supervisor Point and a particular field (i.e. column)
within a recordset.

In CX-Supervisor, a graphic object is created in the
development environment, and can be a line, an arc, a
polygon (including a square and rectangle), a round
rectangle, an ellipse (including a circle), or a polyline. A
complex object can exist as a combination of two or more
graphic objects.

Graphical User Interface. Part of a program that
interacts with the user and takes full advantage of the
graphics displays of computers. A GUI employs pull-
down menus and dialog boxes for ease of use. Like all
Microsoft Windows based applications, CX-Supervisor
has a GUI.

Input/Output type. An attribute of a point that defines the
origin and destination of the data for that point. The data
for a point can originate (be input from) and is destined
(is output to) to the internal computer memory or PLC.

Pictorial representations of computer resources and
functions. The CX-Supervisor development environment
and run-time environment are run from icons.

Each recipe consists of at least one ingredient. Each
ingredient must be related to an existing point.

A type of point where the value of the point can only be a
whole positive or negative number.

Within the CX-Supervisor script language, Item is a
generic term for a point, OPC item or Temperature
Controller item.

A Java style scripting language supported by Microsoft's
Windows Scripting Host.

Java Virtual Machine.
A spreadsheet application.

A windowing environment that is noted for its GUI, and
for features such as multiple typefaces, desk accessories
(such as a clock, calculator, calendar and notepad), and
the capability of moving text and graphics from one
application to another via a clipboard.

CX-Supervisor will run only under Microsoft Windows.
DDE functions communicating with other applications
supported by CX-Supervisor use Microsoft Windows as a
basis.

A word processing application.

Appendix E Glossary of Terms

Nesting

Network

Non-Volatile

NOT

Object

OLE-DB

Operand

Operator

OR

Pages

To incorporate one or more IF THEN ELSE/ELSEIF
ENDIF statements inside a structure of the same kind.

1 - Part of the PLC configuration, based on the device
type. The number of Networks available is dependant on
the device type.

2 - A number of computers linked together with a central
processing point known as a Server which is accessible
to all computers. Networks affect CX-Supervisor in that
further Network associated options are available if the
computer is Network connected.

A point that is designated as 'non-volatile' is a point
whose value is saved on disk and automatically reloaded
when CX-Supervisor resumes execution.

A logic operator used to interrogate Boolean type points
which produces the Boolean inverse of the supplied
argument. An example of NOT is that if a is a statement
and is 'FALSE', then NOT returns 'TRUE'. Ifais a
statement and is 'TRUE', then NOT returns 'FALSE'.

In CX-Supervisor, an object can be text, graphics, a
control, a bitmap, or ActiveX object as created in the
development environment. A complex object can exist
as a combination of two or more objects of any of the
above types. Specifically, graphical objects can be
categorised as a line, an arc, a polygon (including a
square and rectangle), a round rectangle, an ellipse
(including a circle), or a polyline. A control is essentially
a complex graphic object and is specifically either a
pushbutton, a toggle button, a slider, a trend graph, a
rotational gauge or a linear gauge.

OLE-DB is the underlying database technology, on which
ADO relies. OLE-BD is designed to be the successor to
ODBC.

The term used for constants or point variables.

A symbol used as a function, with infix syntax if it has two
arguments (e.g. "+") or prefix syntax if it has only one
argument (e.g. NOT). The CX-Supervisor script
language uses operators for built-in functions such as
arithmetic and logic.

A logic operator used to interrogate Boolean type points.
OR returns "TRUE' if any of the supplied arguments are
"TRUE'. An example of ORis that if a is a statement and
b is a statement, OR will return 'TRUE' if either a and b
are "TRUE'. If both statements return 'FALSE' then OR
will return 'FALSE'.

The combination and manipulation of pages containing
objects within projects forms the basis of CX-Supervisor.
More than one page can exist for each project. The
pages in a project provide the visual aspect of CX-
Supervisor corresponding to a display with the objects
contained in each page providing a graphical
representation of the system being monitored.

159

Appendix E Glossary of Terms

160

Parameter
Association

Pixel

PLC

Point variable

Point

Project

Real type

Recipe

Run-Time
Environment

SCADA

Server

Server Application

A Parameter Association enables values, either constant
or stored in a point, to be passed to a Server Query.

A single displayable point on the screen from which a
displayed image is constructed. The screen resolution of
the computer's Visual Display Unit (VDU) is defined by
the number of pixels across and the number of pixels
down (e.g. 1024 x 768).

See also SVGA mode and VGA mode.
Programmable Logic Controller.

A point within the CX-Supervisor script language that
stores a value or string assigned to that point.

A point is used to hold a value of a predefined type -
Boolean, Integer, Text, etc. The contents of a point may
be controlled by an object or I/O mechanism such as
PLC communication. The contents of a point may
control the action or appearance of an object, or be used
for output via an I/O mechanism.

See also Boolean type, Integer type, point variable, Real
type and Text type.

A CX-Supervisor application will consist of one or a
number of pages linked together. The pages may
contain passive or active graphics, text or animations,
and may be grouped together logically to form a project.
A project may consist of many pages, or simply a single
page. Projects may be built and tested within the CX-
Supervisor development environment, and run stand-
alone under the CX-Supervisor run-time environment.

Only one project at a time may be open for editing within
the CX-Supervisor development environment.

A type of point where the value of the point can be any
number, including those containing a decimal point.

A recipe is a set of pre-defined steps used to perform a
particular task. A CX-Supervisor project may contain
zero or more number of recipes. Recipes are defined in
the development environment and executed, or
downloaded, in the run-time environment.

SCADA applications are run using the run-time
environment of CX-Supervisor, following creation of the
application in the CX-Supervisor development
environment.

Supervisory Control and Data Acquisition.

A Server is the central processing point of a Network that
is accessible to all computers. Networks affect CX-
Supervisor in that further associated options are
available if the computer Network is connected.

An application that can be used to view or interact with,
whilst currently within CX-Supervisor.

Appendix E Glossary of Terms

Statement

String

SVGA mode

CX-Supervisor

Target Value

Taskbar

Text Object

Text Type

Unicode

Validation Code

VBScript

VGA mode

Windows Desktop

Windows Scripting
Host

Within the CX-Supervisor script language, a statement is
a command understood by the run-time environment.
Statements are constructed of commands and
arguments, which when combined, help to formulate a
finished application to be used in the run-time
environment.

The contents of a Text type point that can only contain
literal alphanumeric characters. A string starts following
an opening quotation mark, and ends before a closing
question mark; in the example "name = "spot"", the point
"name" holds the string spot.

A mode of video display that provides 800 600 pixel
resolution (or higher) with 16 or more colours and is
supported on Super Video Graphics Adapter systems.

A SCADA software application which creates and
maintains graphical user interfaces and communicates
with PLCs and other /O mechanisms.

An ingredient must specify a target value for its related
point. This is the value to which the point will be set in
runtime when the recipe is downloaded.

An integral part of Microsoft Windows which allows
Microsoft Windows based applications to be started. CX-
Supervisor is run from the Taskbar.

In CX-Supervisor, a text object is a string on a page.
Attributes such as typeface, point size, embolden,
italicise, underline, left justify, flush right, and centre can
be applied to enhance its presentation.

A type of point that holds a string.

A Multi-Byte Character Set, which not only includes
European Characters like DBCS, but can also include
global support including for Japanese, Chinese and
Cyrillic fonts. However, Unicode is not supported on all
Windows platforms.

Recipe validation code is CX-Supervisor script language
which is used to check point values before downloading
a recipe.

A Visual Basic style scripting language supported by
Microsoft's Windows Scripting Host.

A mode of video display that provides 640 480 pixel
resolution with 16 colours and is supported on Video
Graphics Adapter systems.

An integral part of Microsoft Windows which allows
Microsoft Windows based applications to be started from
icons and for all applications to be organised. CX-
Supervisor can be run from Windows Desktop.

A scripting engine supplied by Microsoft to run VBScript
or JScript. See http://msdn.microsoft.com/scripting

161

Appendix E Glossary of Terms

Wizard Wizards are dialogs used by the CX-Supervisor
development environment to take the user through
complex operations in a simplified step-by-step process.

162

Revision history

Revision history

A manual revision code appears as a suffix to the catalog number on the front
cover of the manual.

Cat. No. WO9E-EN-04

The following table lists the changes made to the manual during each revision.
The page numbers of a revision refer to the previous version.

Revision |Date Revised content

code

01 Sept. 2010 First version in the standard Omron format.
02 June 2011 Updated for CX-Supervisor 3.2 release.

03 March 2017 |Updated for CX-Supervisor 3.3 release.

04 Oct. 2017 Updated for CX-Supervisor 3.4 release.

163

Revision history

164

OmRoON

/Authorized Distributor: \

- /

Cat. No. WO9E-EN-04 Note: Specifications subject to change without notice. Printed in Europe

	W09E-EN-04 Front cover
	TEMP_W09E-EN-04
	Notice
	Trademarks and copyrights
	Copyright

	Introduction
	Expressions
	Scripts
	3-1 Object
	3-2 Page
	3-3 Project

	CX-Supervisor Script Language
	4-1 Points
	4-1-1 Basic Point Assignment
	4-1-2 Further Point Assignment

	4-2 Logic and Arithmetic
	4-2-1 Arithmetic Operators
	4-2-2 Bitwise Operators
	4-2-3 Logical Operators
	4-2-4 Relational Operators

	4-3 Control Statements
	4-3-1 Simple Conditional Statements
	4-3-2 Nested Conditional Statements
	4-3-3 Case Select
	4-3-4 FOR... NEXT Loop
	4-3-5 DO WHILE/UNTIL Loop

	4-4 Subroutines
	4-4-1 Call
	4-4-2 Return

	4-5 Punctuation
	4-5-1 Command String Delimiters
	4-5-2 Indentation
	4-5-3 Multiple Commands
	4-5-4 Parenthesis
	4-5-5 Quotation Marks
	4-5-6 Remarks

	4-6 Indirection within Script Commands and Expressions
	4-7 Point Arrays within Script Commands and Expressions
	4-8 Using Aliases

	VBScript Language Reference
	5-1 List of Features:

	Functions and Methods
	6-1 Object Commands
	6-1-1 Current Object
	6-1-2 Other Objects
	6-1-3 Blink
	6-1-4 Colour
	6-1-5 Disable
	6-1-6 Height
	6-1-7 Horizontal Fill
	6-1-8 Move
	6-1-9 Rotate
	6-1-10 Vertical Fill
	6-1-11 Visible
	6-1-12 Width

	6-2 Page Commands
	6-2-1 Close Page

	6-3 General Commands
	6-3-1 Exponential
	6-3-2 PlayOLE
	6-3-3 DisplayPicture
	6-3-4 PlaySound
	6-3-5 Rand
	6-3-6 RunApplication
	6-3-7 RunHelp
	6-3-8 SetLanguage
	6-3-9 SetNYLEDDescription
	6-3-10 GetPerformanceInfo
	6-3-11 ShutDown

	6-4 Communications Commands
	6-4-1 CloseComponent
	6-4-2 EnableOLE
	6-4-3 EnablePLC
	6-4-4 LaunchTroubleshooter
	6-4-5 OpenComponent

	6-5 Point Commands
	6-5-1 CancelForce
	6-5-2 CopyArray
	6-5-3 DisableGroup
	6-5-4 DisablePoint
	6-5-5 EditPoint
	6-5-6 EnableGroup
	6-5-7 EnablePoint
	6-5-8 Force
	6-5-9 ForceReset
	6-5-10 ForceSet
	6-5-11 GetBit
	6-5-12 InitialiseArray
	6-5-13 InputPoint
	6-5-14 OutputPoint
	6-5-15 PointExists
	6-5-16 SetBit

	6-6 PLC Commands
	6-6-1 ClosePLC
	6-6-2 DownloadPLCProgram
	6-6-3 GetPLCMode
	6-6-4 OpenPLC
	6-6-5 PLCCommsFailed
	6-6-6 PLCMonitor
	6-6-7 SetPLCMode
	6-6-8 SetPLCPhoneNumber
	6-6-9 UploadPLCProgram

	6-7 Temperature Controller Commands
	6-7-1 TCAutoTune
	6-7-2 TCBackupMode
	6-7-3 TCGetStatusParameter
	6-7-4 TCRemoteLocal
	6-7-5 TCRequestStatus
	6-7-6 TCRspLsp
	6-7-7 TCRunStop
	6-7-8 TCSaveData
	6-7-9 TCSettingLevel1
	6-7-10 TCReset

	6-8 Alarm Commands
	6-8-1 AcknowledgeAlarm
	6-8-2 AcknowledgeAllAlarms
	6-8-3 AcknowledgeLatestAlarm
	6-8-4 ClearAlarmHistory
	6-8-5 CloseAlarmHistory
	6-8-6 CloseAlarmStatus
	6-8-7 DisplayAlarmHistory
	6-8-8 DisplayAlarmStatus
	6-8-9 EnableAlarms
	6-8-10 IsAlarmAcknowledged
	6-8-11 IsAlarmActive

	6-9 File Commands
	6-9-1 CloseFile
	6-9-2 CopyFile
	6-9-3 DeleteFile
	6-9-4 EditFile
	6-9-5 MoveFile
	6-9-6 OpenFile
	6-9-7 PrintFile
	6-9-8 Read
	6-9-9 ReadMessage
	6-9-10 SelectFile
	6-9-11 Write
	6-9-12 WriteMessage

	6-10 Recipe Commands
	6-10-1 DisplayRecipes
	6-10-2 DownloadRecipe
	6-10-3 UploadRecipe

	6-11 Report Commands
	6-11-1 GenerateReport
	6-11-2 PrintReport
	6-11-3 ViewReport

	6-12 Text Commands
	6-12-1 BCD
	6-12-2 Bin
	6-12-3 Chr
	6-12-4 FormatText
	6-12-5 GetTextLength
	6-12-6 Hex
	6-12-7 Left
	6-12-8 Message
	6-12-9 Mid
	6-12-10 PrintMessage
	6-12-11 Right
	6-12-12 TextToValue
	6-12-13 ValueToText

	6-13 Event/Error Commands
	6-13-1 ClearErrorLog
	6-13-2 CloseErrorLog
	6-13-3 DisplayErrorLog
	6-13-4 EnableErrorLogging
	6-13-5 LogError
	6-13-6 LogEvent

	6-14 Printer Commands
	6-14-1 ClearSpoolQueue
	6-14-2 EnablePrinting
	6-14-3 PrintActivePage
	6-14-4 PrintPage
	6-14-5 PrintScreen
	6-14-6 PrintSpoolQueue

	6-15 Security Commands
	6-15-1 Login
	6-15-2 Logout
	6-15-3 SetupUsers
	6-15-4 ChangeUserPassword

	6-16 Data Logging Commands
	6-16-1 AuditPoint
	6-16-2 ClearLogFile
	6-16-3 CloseLogFile
	6-16-4 CloseLogView
	6-16-5 ExportAndViewLog
	6-16-6 ExportLog
	6-16-7 OpenLogFile
	6-16-8 OpenLogView
	6-16-9 StartAuditTrail
	6-16-10 StopAuditTrail
	6-16-11 StartLogging
	6-16-12 StopLogging

	6-17 Database Commands
	6-17-1 DBAddNew
	6-17-2 DBClose
	6-17-3 DBDelete
	6-17-4 DBExecute
	6-17-5 DBGetLastError
	6-17-6 DBMove
	6-17-7 DBOpen
	6-17-8 DBProperty
	6-17-9 DBRead
	6-17-10 DBSchema
	6-17-11 DBState
	6-17-12 DBSupports
	6-17-13 DBUpdate
	6-17-14 DBWrite

	6-18 Serial Port Functions
	6-18-1 InputCOMPort
	6-18-2 OutputCOMPort
	6-18-3 CloseCOMPort
	6-18-4 OpenCOMPort
	6-18-5 SetupCOMPort

	6-19 ActiveX Functions
	6-19-1 GetProperty
	6-19-2 PutProperty
	6-19-3 Execute
	6-19-4 ExecuteVBScript
	6-19-5 ExecuteJScript
	6-19-6 ExecuteVBScriptFile
	6-19-7 ExecuteJScriptFile
	6-19-8 GenerateEvent

	Script Example
	7-1 Balloon Script

	Colour Palette
	OPC Communications Control
	A.1 Component Properties
	A.2 Script Interface
	A.3 Functions
	A.3.1 Value
	A.3.2 Read
	A.3.3 Write

	CX-Server Communications Control
	B.1 Functions
	B.2 Value
	B.3 Values
	B.4 SetDefaultPLC
	B.5 OpenPLC
	B.6 ClosePLC
	B.7 Read
	B.8 Write
	B.9 ReadArea
	B.10 WriteArea
	B.11 RunMode
	B.12 TypeName
	B.13 IsPointValid
	B.14 PLC Memory Functions
	B.15 ListPLCs
	B.16 ListPoints
	B.17 IsBadQuality
	B.18 ClockRead
	B.19 ClockWrite
	B.20 RawFINS
	B.21 Active
	B.22 TCGetStatus
	B.23 TCRemoteLocal
	B.24 SetDeviceAddress
	B.25 SetDeviceConfig
	B.26 GetDeviceConfig
	B.27 UploadProgram
	B.28 DownloadProgram
	B.29 Protect
	B.30 LastErrorString

	JScript Features
	Obsolete Features
	D.1 Windows 2000, NT, Windows ME, Windows 98 and Windows 95
	D.2 Old project file formats
	D.4 DDE Commands
	D.4.1 DDEExecute
	D.4.2 DDEInitiate
	D.4.3 DDEOpenLinks
	D.4.4 DDEPoke
	D.4.5 DDERequest
	D.4.6 DDETerminate
	D.4.7 DDETerminateAll
	D.4.8 EnableDDE

	D.5 Graph Commands
	D.5.1 ClearGraph
	D.5.2 StartGraph
	D.5.3 StopGraph
	D.5.4 EditGraph
	D.5.5 SaveGraph
	D.5.6 Snapshot
	D.5.7 GetPointValue
	D.5.8 GetSpoolCount
	D.5.9 SetPrinterConfig

	Glossary of Terms
	Revision history

	W09E-EN-04 Back cover

